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Abstract
Mentoring-reverse mentoring, which is a novel knowledge

transfer framework for unsupervised learning, is introduced in

multi-channel speech source separation. This framework aims

to improve two different systems, which are referred to as a se-

nior and a junior system, by mentoring each other. The senior

system, which is composed of a neural separator and a statistical

blind source separation (BSS) model, generates a pseudo-target

signal. The junior system, which is composed of a neural sep-

arator and a post-filter, was constructed using teacher-student

learning with the pseudo-target signal generated from the senior

system i.e, imitating the output from the senior system (mentor-

ing step). Then, the senior system can be improved by propagat-

ing the shared neural separator of the grown-up junior system to

the senior system (reverse mentoring step). Since the improved

neural separator can give better initial parameters for the sta-

tistical BSS model, the senior system can yield more accurate

pseudo-target signals, leading to iterative improvement of the

pseudo-target signal generator and the neural separator. Ex-

perimental comparisons conducted under the condition where

mixture-clean parallel data are not available demonstrated that

the proposed mentoring-reverse mentoring framework yielded

improvements in speech source separation over the existing un-

supervised source separation methods.

Index Terms: mentoring-reverse mentoring, unsupervised

training, deep neural network, speech source separation

1. Introduction

Speech source separation is an essential technique in video con-

ferencing systems, speech diarization systems, and robot audi-

tion systems, where a mixture of multiple speech sources and

noise sources are simultaneously observed at multi-channel mi-

crophones. In particular, blind source separation (BSS) [1–8]

has been actively studied and shown to be well optimized in an

unsupervised manner with a statistical model. In this case, how-

ever, the permutation ambiguity of BSS should be aligned, and

the separation performance can be highly affected by the initial

parameter of the model.

On the other hand, supervised learning of deep neural net-

work (DNN) has achieved an overwhelming performance in

speech source separation e.g., deep clustering (DC) [9,10], per-

mutation invariant training (PIT) [11, 12], and hybrid modeling

of the DNN and statistical BSS model [13, 14]. This approach

generally aims to train a DNN that yields a time-frequency (TF)

mask for extracting the corresponding sound source. Although

this approach can capture complicated spectral characteristics

of a speech source, it requires a large amount of paired data

composed of the observed mixed-signal and supervisory clean

signal. It should be noted that collecting clean signals in a real

environment is infeasible. The paired data therefore have been

Figure 1: Conceptual image of mentoring-reverse mentoring

framework. Junior system is learned by teacher-student leaning

(in mentoring step) and senior system is improved by propaga-

tion of shared knowledge (in reverse mentoring step).

created by simulation, such as the image method [15]. Consid-

eration of all possible types of sound sources and room shapes

in our daily lives for robust training, however, is troublesome

work. Unsupervised training of speech source separation sys-

tems, which assumes to utilize only microphone observations

without oracle clean signals, therefore is highly desired for the

practical application of speech source separation systems.

Recently, unsupervised training has been applied to DNN-

based speech source separation [16–19]. In general, this ap-

proach has exploited a pseudo-target signal (also referred to

as a reference signal) that is estimated by using unsupervised

BSS techniques, instead of using the oracle clean signal as a

target. Here, the following BSS techniques were used as a

pseudo-target signal generator: the k-means clustering with the

inter-channel phase difference [16], the complex angular cen-

tral Gaussian mixture model (cACGMM) [8, 17], and the lo-

cal Gaussian modeling (LGM) [19]. In addition, the statisti-

cal BSS model initialized with a learned DNN outperformed

a randomly-initialized BSS model [17, 19]. In this approach,

errors in the pseudo-target signal, however, lead directly to de-

graded training of a DNN-based separator.

To improve the accuracy of predicting the pseudo-target

signal, the present study attempts to introduce the concepts of

mentoring and reverse mentoring (as illustrated in Fig. 1) to

unsupervised multi-channel speech source separation. In gen-

eral, junior people start by imitating seniors (mentoring), and

seniors try to take advantage of the new knowledge that young

people have (reverse mentoring). Based on this analogy, two

different systems, which are referred to as a senior and a ju-

nior systems, can be improved by mentoring each other. In the

mentoring step, the junior system can be built to imitate the

output of the senior system: this can be achieved by teacher-

student learning. By allowing the senior and junior systems to

have common components, reverse mentoring can transfer the

components of the grown-up junior system to the senior sys-
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tem: this enables the senior system to generate more accurate

outputs. The mentoring-reverse mentoring framework is rele-

vant to knowledge distillation techniques [20] such as teacher-

student learning [21] and born again neural networks [22, 23].

The teacher-student learning has a clear hierarchy between two

systems: this does not aim to improve the teacher model but

focuses on building a compressed student model. In contrast,

the mentoring-reverse mentoring framework aims to alternately

improve two systems under unsupervised setting.

Specifically, the senior system is composed of a neural sep-

arator and a statistical BSS model, and the junior system is com-

posed of a neural separator and a post-filter. During mentoring,

the junior system is trained with the pseudo-target signal gen-

erated from the senior system. During reverse mentoring, the

neural separator of the refined junior system is transferred to the

senior system. The knowledge obtained from this study could

be useful for developing source separation systems under the

practical condition where parallel data are not available.

The rest of the present paper is organized as follows. Sec-

tion 2 presents existing works and their relevance to the pro-

posed method. Section 3 describes the proposed mentoring-

reverse mentoring framework. Section 4 demonstrates the ef-

fectiveness of the proposed method on unsupervised multi-

channel speech separation. Section 5 concludes this paper.

2. Related Works

This section briefly reviews the existing methods for building

neural speech separators when parallel data are not available.

2.1. Unsupervised training of neural separators

Unsupervised training techniques for neural speech source sep-

arators have been proposed [24, 25]. In [24], a DNN was di-

rectly optimized by using the likelihood function of a spatial

model based on cACGMM [8]. This method simultaneously

learns a separation network and a localization network [25]: the

former and the latter aim to estimate a TF mask and a direction

of arrival (DoA) for each source, respectively. This method not

only solves the permutation problem in the spatial model, but

also estimates the number of sound sources. The estimation ac-

curacy, however, can be degraded because the loss function is

affected by a mismatch between the assumed spatial propaga-

tion and the actual one.

2.2. Pseudo-supervised training of neural separators

Several attempts to exploit pseudo supervision have been made

for training neural source separators [16–19]. In this approach,

instead of using a clean signal as a target in a supervised ap-

proach, an output signal of unsupervised BSS has been used as

a pseudo-target signal. In [16], a separated signal was obtained

by k-means clustering using a phase difference and exploited

as a pseudo-target signal for training a single-channel separa-

tion network. In [17], the output of cACGMM was exploited

as pseudo supervision for training a separation network. Note

that the pseudo-target signal contains errors because the unsu-

pervised BSS is not perfect: this can hinder the training of a

subsequent separation network.

To avoid overfitting of neural source separators to such

noisy pseudo-target signal, several loss functions for training

neural separators have been proposed [18, 19]. In [18], a loss

function was weighted with confidence for the pseudo-target

signal. In [19], we have already proposed a loss function that

computes Kullback-Leibler divergence (KLD) between the pos-

terior probability density function (PDF) of the output signal

from the statistical model and that from the DNN. Thanks to

consideration of uncertainty of the signals in the form of distri-

bution, it is expected that a neural separator can be trained while

avoiding overfitting to errors in the TF bins with low posterior

probabilities given by the statistical model.

In addition to [19], this study introduced the mentoring-

reverse mentoring framework to iteratively improve the pseudo-

target signal generator and the neural source separator.

3. Proposed Method

This section presents a mentoring-reverse mentoring framework

for unsupervised multi-channel speech source separation. The

following subsections first explain the overview of the proposed

method. Then, the details on the formulation and implementa-

tion are explained and finally, how this method works is de-

scribed. Here, the present study assumes that the DoAs are

known because face recognition is available in, for example,

teleconferencing and human-robot communication.

3.1. Overview of proposed method

Figure 2 illustrates an overview of the proposed method. The

pseudo-target signal generator, referred to as a senior system, is

composed of a neural separator and a statistical BSS model. The

main system, referred to as a junior system, is composed of a

neural separator and a post-filter. Note that the neural separator

is shared between the senior and junior systems.

The proposed framework aims to refine both the senior and

junior systems by mentoring each other. This is conducted

by the following four steps: Step 1 generates a pseudo-target

signal from the senior system based on a randomly-initialized

LGM [26]; Step2 (mentoring) conducts teacher-student learn-

ing to build the junior system to imitate the pseudo-target signal

generated from the senior system; by allowing the senior and

junior systems to have the common neural separator, Step 3

(reverse mentoring) transfers the neural separator of the grown-

up junior system to the senior system; and Step 4 can generate

more accurate pseudo-target signal from the refined senior sys-

tem, then returns to Step 2.

This alternating procedure is repeated several times, and fi-

nally, the separation signal is obtained by using iterative param-

eter estimation with the posterior PDF obtained in the junior

system followed by multi-channel Wiener filtering (MWF).

3.2. Pseudo-target signal generator: Senior system

The senior system is composed of the neural separator and an

LGM-based speech source separator [7, 26]. To separate mul-

tiple speech sources, the LGM-based speech source separation

assumes that the PDF of each speech source belongs to a time-

varying Gaussian distribution that is represented as:

p(ci,l,k) = N (0, vi,l,kRi,k), (1)

where l denotes the frame index, k denotes the frequency index,

ci,l,k denotes the i-th speech source, vi,l,k denotes the time-

frequency variance of the i-th speech source, and Ri,k denotes

the multi-channel spatial covariance matrix of the i-th speech

source. In addition, DoA information is incorporated into the

speech source separation process by utilizing a complex inverse

Wishart distribution as a prior distribution of a multi-channel

covariance matrix [26] that is defined as:

Ri,k ∼ IW(u, (u−Nm)(aθi,ka
H
θi,k

+ ǫI)), (2)
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Figure 2: Overview of proposed mentoring-reverse mentoring framework for unsupervised multi-channel speech separation.

where u is a degree of freedom of distribution, Nm denotes

the number of microphones, and aθi,k denotes the direction of

speech source. Besides, H denotes the Hermitian transpose of

a matrix and a vector.

Since all the PDFs are Gaussian distributions, the posterior

PDF of the i-th speech source is estimated to be a Gaussian

distribution as [19]:

p(ci,l,k|xl,k,Θk) = N (ci,l,k|µp,i,l,k,Vp,i,l,k), (3)

where xl,k ∈ C
Nm denotes the microphone input signal,

µp,i,l,k and Vp,i,l,k are calculated as µp,i,l,k =Wi,l,kxl,k and

Vp,i,l,k = (I −Wi,l,k)vi,l,kRi,k. Wi,l,k denotes the time-

varying MWF that is defined as Wi,l,k = vi,l,kRi,kR
−1

x,l,k.

The separation parameter Θk = {vi,l,k,Ri,k} is iteratively up-

dated to maximize the likelihood function in Eq. (3) with the

expectation-maximization (EM) algorithm [27]. Note that it is

not necessary to align the permutation at the frequency-level

and source-level because the DoA is given in this study.

At the beginning of unsupervised training, a pseudo-target

signal is generated from a randomly-initialized LGM and used

for training a junior system. After this first mentoring step, the

neural separator of the trained junior system is transferred to the

senior system and hereafter, the neural separator can provide

better initial parameters for the LGM-based PDF estimation.

This contributes to generation of more accurate pseudo-target

signals.

3.3. Main speech source separator: Junior system

The junior system is composed of a neural separator and a post-

filter. In the neural separator, the TF mask Mi,l,k and TF vari-

ance vi,l,k for each speech source are inferred via the DNN. A

spectral amplitude of the microphone observation log |xl,k| is

concatenated with a steered response amplitude log |aH
θ,kxl,k|,

where aθ,k denotes the steering vector of the direction θ, and

then taken as an input to the DNN. The directions of speech

sources are incorporated into the direction attractor vectors [28].

The multi-channel spatial covariance matrix for each source

Ri,k is estimated with the TF mask Mi,l,k as:

Ri,k =
1∑

l
Mi,l,k

∑

l

Mi,l,kxl,kx
H
l,k. (4)

The posterior PDF of each speech source is calculated as

q(ci,l,k|xl,k,Φk) = N (ci,l,k|µq,i,l,k,Vq,i,l,k), where Φk =

{vi,l,k,Ri,k} is the separation parameter. During inference,

Φk is inferred via a DNN and iteratively updated with EM al-

gorithm. Finally, the separated signal is obtained by the MWF.

3.4. Loss function for training deep neural network

To avoid overfitting of the neural separator to the error in

pseudo-target signal, the proposed method attempts to minimize

the KLD between the posterior PDF computed with the LGM

pi,l,k and that computed with the DNN qi,l,k [19] as:

D(pi,l,k‖qj,l,k)
= (µq,j,l,k − µp,i,l,k)

HV −1

q,j,l,k(µq,i,l,k − µp,i,l,k)

+ tr(V −1

q,j,l,kVp,i,l,k) + log
|Vq,j,l,k|

|Vp,i,l,k|
−Nm.

(5)

3.5. Effectiveness of mentoring-reverse mentoring

This subsection describes how the proposed mentoring-reverse

mentoring works in multi-channel speech source separation.

In the first mentoring step, the junior system is constructed

by using teacher-student learning to imitate the pseudo-target

signal estimated by the randomly-initialized BSS, which is a

frequency-independently formulated separator that results in

spontaneous inconsistencies between frequencies. The previous

work on teacher-student learning of DNN with pseudo-target

signals obtained by the BSS [17, 19] observed that DNN does

not overfit to such inconsistencies, but rather learn parameters

that take into account the time-frequency correlations. This

property seems to be the key to the success of the mentoring

step. In the reverse mentoring step, the data-driven knowledge

of the learned junior system is transferred to the senior system

as a parameter of DNN. In the senior system, the BSS is initial-

ized with the parameters yielded from the DNN to estimate the

pseudo-target signal with higher accuracy. Using the improved

pseudo-target signal, the mentoring step is performed again to

obtain a junior system. The reduced error in the pseudo-target

signal contributes to the junior system estimating the parame-

ters of the DNN more accurately.

88



Table 1: Performance of existing and proposed unsupervised speech source separation methods.

# iteration of

mentoring-revere mentoring SDR [dB] SIR [dB] FWseg.SNR [dB] CD PESQ

Unprocessed - -0.80 2.26 7.38 4.78 1.69

Pseudo-target signal [26] - 2.92 6.54 9.31 4.07 1.92

Training w/ pseudo-target signal [19] 0 4.84 7.92 9.53 3.95 2.03

1 5.73 8.42 9.60 3.81 2.04

Proposed method 2 5.80 8.49 9.67 3.77 2.05

3 5.82 8.54 9.71 3.77 2.05

Training w/ oracle target signal [28] - 7.79 10.10 11.32 3.46 2.15

4. Experiments

To demonstrate the effectiveness of the proposed method, ex-

perimental comparisons were conducted in an environment with

multiple speech sources and diffuse noise.

4.1. Speech materials

The clean speech and the diffuse noise were selected from the

TIMIT corpus [29] and the diverse environments multi-channel

acoustic noise database (DEMAND) [30], respectively. To sim-

ulate simultaneous speech, a target and an interference speech

source were placed respectively at one of the 13 directions (-

90◦ to 90◦ at 15◦ intervals) without duplication. Here, the mea-

sured impulse responses in the multi-channel impulse response

database (MIRD) [31] were convoluted to the aforementioned

dry sources at a signal-to-interference ratio (SIR) of the range

of -5 dB to 5 dB. Then, the diffuse noise was superposed at a

signal-to-noise ratio (SNR) of the range of 20 dB to 30 dB.

A linear microphone array with eight microphones was

used. The microphone spacing was 3-3-3-8-3-3-3 cm, 4-4-4-

8-4-4-4 cm, or 8-8-8-8-8-8-8 cm. The microphone alignment

was assumed to be known to calculate steering vectors used for

an input feature of the DNN. The distance between a speech

source and a microphone was 1 m, and the reverberation time

was randomly set to 0.16 s, 0.36 s, or 0.61 s for each utterance.

The talkers and utterances were different between the train-

ing and the testing data. For training, 1000 utterances were

used: this is smaller than the conventional study (e.g., 30000

in [17]) because a small number of required utterances is prefer-

able in practice. For testing, 500 utterances were used.

The sampling rate was 8 kHz, the frame size was 256, and

the frame-shift was 64. The number of frequency bins was 129.

4.2. Neural network architecture

The network architecture for the proposed method was empir-

ically determined. The neural separator has three layers of bi-

directional long short-term memory (BLSTM) with 300 units

for each direction, and one fully connected layer for estimat-

ing a time-frequency mask and a time-frequency activity. The

direction attractor net [28] has four fully connected layers for

each speech source. All network parameters were optimized us-

ing the Adam optimizer [32]. The learning rate of the optimizer

was 1.0×10−3 and the mini-batch size was 32.

For an impartial comparison, the number of epochs was set

to 300 in all DNN methods. When the pseudo-target signal was

updated N times in the proposed method, the pseudo-target sig-

nal was generated and replaced every 300/(N+1) epochs with

the parameters of DNN at that time.

The hyper-parameter u in LGM [26] was 50 and the pa-

rameters Θk were updated 30 times with EM algorithm, which

were empirically determined.

4.3. Experimental results

The performance of speech source separation was evaluated us-

ing the signal-to-distortion ratio (SDR) and the SIR from BSS-

EVAL [33], the frequency-weighted segmented SNR (FWseg.

SNR), the cepstrum distortion (CD), and the PESQ. The aver-

age scores for all evaluation measures are listed in Table 1.

First, the pseudo-target signal estimated by the randomly-

initialized LGM [26] was compared with the output signal from

the junior system (i.e., Training w/ pseudo-target signal [19])

to examine the effectiveness of the mentoring step. The result

demonstrated that the first mentoring step performed well: the

junior system outperformed the senior system (i.e., randomly-

initialized LGM).

Next, the effectiveness of the proposed mentoring-reverse

mentoring framework was investigated. The result demon-

strated that performing the mentoring and reverse mentoring

once greatly improved the separation performance over the case

with only the mentoring step (i.e., Training w/ pseudo-target

signal [19]). This indicates that the neural separator transferred

from the learned junior system provided better parameters for

initialization of the LGM, and decreased residual noise in the

pseudo-target signal, leading to improved performance in train-

ing the junior system again.

Finally, the effectiveness of repeating the mentoring-reverse

mentoring steps was evaluated. The result demonstrated that

each iteration of the mentoring and reverse mentoring improved

the separation performance and the improvement almost con-

verged in the third update. The proposed method focuses on

unsupervised learning and does not reach the performance of

the junior system built in a supervised manner [28] (i.e., Train-

ing w/ oracle target signal [28]). In our future work, selecting

training data based on the reliability of the pseudo-target signal

in the mentoring step is expected to improve the performance

efficiently.

5. Conclusions

The concept of mentoring-reverse mentoring was introduced in

unsupervised multi-channel speech source separation. In the

mentoring step, the junior system was built by teacher-student

learning with the pseudo-target signal generated from the se-

nior system. In the reverse mentoring step, the senior system

was improved by taking advantage of the shared neural sep-

arator of the refined junior system. The experimental results

demonstrated the iterative improvement of the senior and junior

systems and the improvement of the proposed method over the

existing methods.

6. Acknowledgements

The research was supported by NII CRIS collaborative research

program operated by NII CRIS and LINE Corporation.

89



7. References

[1] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures
via time-frequency masking,” IEEE Transactions on Signal Pro-

cessing, vol. 52, no. 7, pp. 1830–1847, July 2004.

[2] P. Common, “Independent component analysis, a new concept ?”
Signal Processing, vol. 36, no. 3, pp. 287–314, April 1994.

[3] A. Hiroe, “Solution of permutation problem in frequency domain
ICA using multivariate probability density functions,” in Proceed-

ings ICA, Mar. 2006, pp. 601–608.

[4] T. Kim, H. Attias, S.-Y. Lee, and T.-W. Lee, “Independent vec-
tor analysis: an extension of ICA to multivariate components,” in
Proceedings ICA, Mar. 2006, pp. 165–172.

[5] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and
H. Saruwatari, “Determined blind source separation unifying in-
dependent vector analysis and nonnegative matrix factorization,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-

cessing, vol. 24, no. 9, pp. 1626–1641, Sept 2016.

[6] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and
H. Saruwatari, Determined Blind Source separation with Indepen-

dent Low-Rank Matrix Analysis. Springer Publishing Company,
Incorporated, 2018, ch. 6, pp. 125–155.

[7] N. Duong, E. Vincent, and R. Gribonval, “Under-determined re-
verberant audio source separation using a full-rank spatial covari-
ance model,” IEEE Trans. Audio Speech Lang. Process., vol. 18,
no. 7, pp. 1830–1840, 2010.

[8] N. Ito, S. Araki, and T. Nakatani, “Complex angular central gaus-
sian mixture model for directional statistics in mask-based mi-
crophone array signal processing,” in 2016 24th European Signal

Processing Conference (EUSIPCO), 2016, pp. 1153–1157.

[9] J. Hershey, Z. Chen, J. L. Roux, and S. Watanabe, “Deep clus-
tering: Discriminative embeddings for segmentation and sepa-
ration,” in 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2016, pp. 31–35.

[10] Z. Wang, J. L. Roux, and J. Hershey, “Deep clustering: Dis-
criminative embeddings for segmentation and separation,” in 2018

IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2018, pp. 1–5.

[11] D. Yu, M. Kolbæk, Z. H. Tan, and J. Jensen, “Permutation invari-
ant training of deep models for speaker-independent multi-talker
speech separation,” in 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), March 2017,
pp. 241–245.

[12] T. Yoshioka, H. Erdogan, Z. Chen, and F. Alleva, “Multi-
microphone neural speech separation for far-field multi-talker
speech recognition,” in 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2018, pp.
5739–5743.

[13] A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio
source separation with deep neural networks,” IEEE/ACM Trans.

Audio Speech Lang. Process., vol. 24, no. 9, pp. 1652–1664, 2016.

[14] A. A. Nugraha, A. Liutkus, and E. Vincent, “Deep neural network
based multichannel audio source separation,” in Audio Source

Separation. Springer, 2018, pp. 157–185.

[15] J. B. Allen and D. A. Berkley, “Image method for efficiently sim-
ulating small-room acoustics,” The Journal of the Acoustical So-

ciety of America, vol. 65, no. 4, pp. 943–950, 1979.

[16] E. Tzinis, S. Venkataramani, and P. Smaragdis, “Unsupervised
deep clustering for source separation: Direct learning from mix-
tures using spatial information,” in ICASSP 2019-2019 IEEE In-

ternational Conference on Acoustics, Speech and Signal Process-

ing (ICASSP). IEEE, 2019, pp. 81–85.

[17] L. Drude, D. Hasenklever, and R. Haeb-Umbach, “Unsupervised
training of a deep clustering model for multichannel blind source
separation,” in ICASSP 2019-2019 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 695–699.

[18] P. Seetharaman, G. Wichern, J. Le Roux, and B. Pardo, “Boot-
strapping single-channel source separation via unsupervised spa-
tial clustering on stereo mixtures,” in ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2019, pp. 356–360.

[19] M. Togami, Y. Masuyama, T. Komatsu, and Y. Nakagome, “Unsu-
pervised training for deep speech source separation with kullback-
leibler divergence based probabilistic loss function,” in ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2020, pp. 56–60.

[20] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[21] C. Buciluundefined, R. Caruana, and A. Niculescu-Mizil, “Model
compression,” in Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’06. New York, NY, USA: Association for
Computing Machinery, 2006, p. 535–541. [Online]. Available:
https://doi.org/10.1145/1150402.1150464

[22] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anand-
kumar, “Born again neural networks,” International Conference

on Machine Learning, 2018.

[23] Q. Xie, E. Hovy, M.-T. Luong, and Q. V. Le, “Self-training with
noisy student improves imagenet classification,” arXiv preprint

arXiv:1911.04252, 2019.

[24] L. Drude and R. Haeb-Umbach, “Integration of neural networks
and probabilistic spatial models for acoustic blind source sepa-
ration,” IEEE Journal of Selected Topics in Signal Processing,
vol. 13, no. 4, pp. 815–826, 2019.

[25] Y. Bando, Y. Sasaki, and K. Yoshii, “Deep bayesian unsupervised
source separation based on a complex gaussian mixture model,”
in 2019 IEEE 29th International Workshop on Machine Learning

for Signal Processing (MLSP). IEEE, 2019, pp. 1–6.

[26] N. Q. K. Duong, E. Vincent, and R. Gribonval, “An acoustically-
motivated spatial prior for under-determined reverberant source
separation,” in 2011 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), May 2011, pp. 9–12.

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likeli-
hood from incomplete data via the em algorithm,” JOURNAL OF

THE ROYAL STATISTICAL SOCIETY, SERIES B, vol. 39, no. 1,
pp. 1–38, 1977.

[28] Y. Nakagome, M. Togami, T. Ogawa, and T. Kobayashi, “Deep
speech extraction with time-varying spatial filtering guided by de-
sired direction attractor,” in ICASSP 2020-2020 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2020, pp. 671–675.

[29] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S.
Pallett, and N. L. Dahlgren, “DARPA TIMIT acoustic phonetic
continuous speech corpus CDROM,” 1993.

[30] J. Thiemann, N. Ito, and E. Vincent, “The diverse environments
multi-channel acoustic noise database (DEMAND): A database of
multichannel environmental noise recordings,” The Journal of the

Acoustical Society of America, vol. 133, p. 3591, 05 2013.

[31] E. Hadad, F. Heese, P. Vary, and S. Gannot, “Multichannel audio
database in various acoustic environments,” 2014 14th Interna-

tional Workshop on Acoustic Signal Enhancement (IWAENC), pp.
313–317, 2014.

[32] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations

(ICLR), 2015.

[33] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measure-
ment in blind audio source separation,” IEEE Transactions on Au-

dio, Speech, and Language Processing, vol. 14, no. 4, pp. 1462–
1469, July 2006.

90


