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Abstract

Reconstruction of speech envelope from neural signal is a gen-
eral way to study neural entrainment, which helps to understand
the neural mechanism underlying speech processing. Previous
neural entrainment studies were mainly based on single-trial
neural activities, and the reconstruction accuracy of speech en-
velope is not high enough, probably due to the interferences
from diverse noises such as breath and heartbeat. Considering
that such noises independently emerge in the consistent neu-
ral processing of the subjects responding to the same speech
stimulus, we proposed a method to align and average electroen-
cephalograph (EEG) signals of the subjects for the same stimuli
to reduce the noises of neural signals. Pearson correlation of
constructed speech envelops with the original ones showed a
great improvement comparing to the single-trial based method.
Our study improved the correlation coefficient in delta band
from around 0.25 to 0.5, where 0.25 was obtained in previous
leading studies based on single-trial. The speech tracking phe-
nomenon not only occurred in the commonly reported delta and
theta band, but also occurred in the gamma band of EEG. More-
over, the reconstruction accuracy for regular speech was higher
than that for the time-reversed speech, suggesting that neural
entrainment to natural speech envelope reflects speech seman-
tics.

Index Terms: speech envelope, neural entrainment, subject
aligned EEG, reconstruction accuracy

1. Introduction

Speech perception, which links auditory and cognitive pro-
cesses, is the acquisition of communicative information from
speech sounds [1]. In current years, studies have extended to
investigate how neural activity tracks the acoustic or linguistic
information of a continuous speech stream, which is called neu-
ral entrainment to the speech signal [2-5]. They found that the
neural response in the delta and theta frequency bands could
track the speech envelope when listening to speech [6]. In
the studies of neural entrainment, the stimuli are always pre-
sented to subjects only once to avoid a priming effect. Because
it is impossible to specify the event related potentials (ERP)
by averaging more trials, this kind of studies employed a sys-
tem modeling frame to estimate the temporal response func-
tions (TRFs) of the neural system. If we treat the neural system
as a linear system, speech signal such as its envelope of the
stimuli can be reconstructed from EEG signals, and the recon-
struction accuracy is generally used to evaluate neural entrain-
ment. However, the reconstruction accuracy was not so high
enough currently. Meanwhile, some contrary results were re-
ported. For example, speech envelope is usually considered re-
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lated to low-level acoustic feature such as syllable boundary [5],
while some studies provided that neural entrainment to speech
was stronger when speech was easy to understand [7, 8]. They
argued whether or not speech envelope tracking is modulated
by high-level language processing. Some other studies defeat
that there was no difference in the neural entrainments between
accessible and inaccessible speech [9-11]. Here, we speculate
that the contrary may be caused by the unexpected noises dur-
ing collecting EEG data. As well known, the scalp EEG signal
is easily contaminated by external noise, such as eye movement,
body activity, heartbeat and breath. Single-trial based result is
largely dependent on the noise level of EEG signal. If the noises
of EEG signal can be largely reduced in this situation, higher re-
constructed accuracy of speech envelope and better results can
be expected.

In this study, we proposed a method to reduce the external
noise for continuous natural speech by aligning the subjects’
neural signals. For the same speech stimulus, each subject prob-
ably uses the same neural mechanism to process speech, which
means the TRFs is similar. In contrast, breath, heartbeat and
other external noises from different individuals often occur ran-
domly. Therefore, if we can align the neural responses to cor-
responding stimulus from multiple subjects and then obtain the
average value, such random noises will be reduced by the av-
eraging processing on the EEG signal. As a result, a higher
reconstruction accuracy of envelope and a more accurate TRF
would be obtained from the averaged subject aligned EEG data
than single-trial ones.

In section 2, we will introduce the experiment design and
neural entrainment modeling methods in details. Our results
will be reported in section 3 and discussed in section 4. In the
end, conclusions are given in section 5.

2. Materials and Methods
2.1. Experimental design
2.1.1. Participants

Twenty-two healthy Mandarin Chinese speakers (mean + stan-
dard deviation age, 22 + 2.4 years; nine men; right-handed)
were recruited from Tianjin University and Tianjin University
of Finance and Economics. The experiments were conducted in
accordance with the Declaration of Helsinki [12] and approved
by the local ethics committee. The subjects signed informed
consent forms before the experiment and were paid for their
participation afterward. All the subjects reported no history of
hearing impairment or neurological disorders.
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2.1.2. Stimuli and procedure

Subjects undertook 48 non-repetitive trials separated into two
groups; each trial was around 60 s. One group of the trials
consists of 24, short stories with a complete storyline recorded
by a male Chinese announcer in a soundproof room. And an-
other group included the left 24 trials, which were the story seg-
ments, but played in time-reverse, and was used as a contrast to
evaluate whether neural entrainment to speech envelope reflects
speech intelligibility. All stimuli were mono speech with 44.1
kHz sampling rate, and the stimulus amplitudes were normal-
ized to have the same root mean square (RMS) intensity. The
48 trials were randomly presented to the subjects. All speech
segments were also modified to truncate the silence gaps to less
than 0.5s [3].

The experiment was carried out in an electronically and
magnetically shielded soundproof room. In the experiment,
speech sounds were presented to subjects through Etymotic Re-
search ER-2 insert earphones (Etymotic Research, Elk Grove
Village, IL, USA) at a suitable volume (around 65 dB). During
each trial, subjects were instructed to focus on a crosshair mark
in the center of the screen to minimize blinking, head move-
ments, and other bodily movements. There was a five-second
interval between each trial, and the subjects were given a five-
minute break every ten trials. After each story trial, subjects
were asked immediately to answer multiple-choice questions
about the content of the story to ensure that they focused on the
auditory task. For the time-reverse trials, we embedded unique
tones in some trials to draw more of the subjects’ attention to
the stimuli. Subjects were requested to detect the tones and in-
dicate how many times they appeared after the trial. The EEG
data corresponding to the embedded tones were removed in fur-
ther analysis.

2.2. Method details
2.2.1. Data acquisition and pre-processing

The scalp EEG signal was recorded with a 128-channel Neu-
roscan Synamps system (Neuroscan, USA) at a sampling rate
of 1000 Hz. The electrodes were placed according to the stan-
dard 10-5 system, and six channels were used for recording a
vertical electrooculogram (VEOG), a horizontal electrooculo-
gram (HEOG), and two mastoid signals. The impedance of each
electrode was kept below 5 k€2 during data acquisition. Three
subjects’ data were discarded in further analysis because they
did not give a proper answer for the multiple-choice questions
or the electrodes detached during the EEG data recording.

The raw EEG data were pre-processed using the EEGLAB
toolbox [13] in MATLAB (MathWorks). This involved remov-
ing sinusoidal (i.e., line) noise and bad channels (i.e., low-
frequency drifts, noisy channels, short-time bursts) and repair-
ing the data segments. Then, the EEG data was bandpass fil-
tered in the delta band (1-3 Hz), theta band (4-8 Hz), alpha band
(9-12 Hz) and beta band (13-30 Hz), and then downsampled to
64 Hz [2, 14]. For the gamma band, the processed raw EEG
data were filtered with bandpass of 31-40 Hz and 40-70 Hz,
then downsampled to 100 Hz and 150 Hz.

The broadband temporal speech envelopes were obtained
from Hilbert transforms [15]. For the following modeling ap-
proach, the envelope was then decimated to the same sampling
rate as EEG, enabling us to relate their dynamics to the EEG
signals.
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Figure 1: Subject-alignment based
neural entrainment modeling procedure.

2.3. Subject-alignment of EEG signals

During the experiment, we marked the time trigger for the EEG
signal according to the stimuli onset and offset. In the offline
analysis, the 48 data epochs (24 story trials and 24 time-reverse
trials) were extracted on the basis of the time trigger for each
subject. Then, we could separately get data epochs (19 subjects
x 48 trials) for story and time-reverse stimuli. We assume that
all of the subjects use the same neural mechanism to process
the stimulus speech so their TRFs are nearly the same. The
averaged alignment data on all subjects is expected to reduce
the noises which may be caused by breathing, inattentiveness,
etc., through averaging processing. After averaging the subject
aligned EEG, we got 48 EEG data epochs.

2.4. Neural entrainment modeling

In this study, we used an mTRF toolbox
(https://github.com/mickcrosse/mTRF-Toolbox) to linearly
map the speech envelope and the neural response [16]. The
main principle is to treat the brain as a linear time-invariant
(LTI) system where the output (neural response) of the system
is the convolution of the input and a TRF of the brain. The TRF
can be considered a filter that linearly transfers the continuous
speech envelope to the dynamic neural response. The TRF of
the channel n is a function of w(¢, n) of time ¢ and the output
of the neural system is 7 (¢, n) for the same channel n. For an
input speech stimulus s(t), the output can be described as:

r(t,n) =Y w(rn)st—7). (1)

In a hypothetical LTI system, a backward decoding approach
can be modeled using a decoder g(¢,n), which is the inverse
function of w(t, n). Thus, the input speech stimulus s(¢) can be
reconstructed by filtering the neural response (¢, n) using the
decoder function g(t,n). This can be expressed as:

5(t) = Z ZQ(T, n)r(t—7,n).

Where §(t) is the reconstructed speech stimuli. Here, the solu-
tion of g(t, n) is:

(@)

g(t,n) = [r(t,n)rT(t,n)]flr(t,n)sT(t) 3)

The optimal decoder g(¢,n) is acquired by minimizing the
mean-squared error (MSE) between the original and recon-
structed speech stimuli. The proposed subject-alignment based
neural entrainment model is shown in Figure 1.
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Figure 2: Comparison of reconstruction accuracies
between the proposed subject-alignment based method and the single-trial based method.

To evaluate our method, we used the subject aligned EEG
to reconstruct speech envelope, and compared the reconstruc-
tion accuracy of the proposed subject-alignment method with
those of the previous single-trial based method. For all training
processes, we used a leave-one-out cross-validation procedure,
where 23 trials were used for training, and the remaining one
trial was used for testing in each fold. Because the parame-
ters of g(¢,n) was different in each trial, we used the averaged
parameters of the decoder g(t,n) trained on the other 23 tri-
als [17]. In single-trial based method, the decoders were trained
based on subject’s neural data. Since each subject took part in
24 trials, the procedure was repeated 24 times for each subject.
Our proposed method was trained based on the averaged sub-
ject aligned data, which was repeated for 24 iterations for the
averaged data.

3. Results
3.1. Behavioral results

During the experiment, speech comprehension was evaluated
by subjects. For story speech and time-reversed speech, speech
comprehension acquired 4.74 + 0.45 and 1.46 + 0.81 of the 5
scores respectively (the scores of 5 is very easy to understand
and 1 is completely incomprehensible). It means the compre-
hension of time-reversed speech is very low. For the accuracy
of multiple choice questions after each trial, the accuracy of the
answers was 88.25 + 4.62%, indicating that most of the subjects
concentrated on the listening task during the experiment.

3.2. Comparison of reconstruction accuracies between the
proposed method and single-trial based method

The reconstruction accuracy was evaluated by measuring
the Pearson correlation coefficient between the reconstructed
speech envelope and the original one. In our study, the effi-
ciency of the proposed subject-alignment method was repre-
sented by the correlation coefficient. To quantitatively com-
pare the two methods, the correlation coefficient was firstly
transformed into a z value by Fisher’s z transformation to sat-
isfy a normal distribution [18]. Then, an analysis-of-variance
(ANOVA) of the z values with factors of frequency (differ-
ent frequency bands) and reconstruction methods (proposed
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method and single-trial based method) revealed a significant
effects on both frequency (F' = 1122.8,p < 0.001) and re-
construction methods (F 623.54,p < 0.001). The re-
sults of ANOVA demonstrate that the reconstruction accuracy
of speech envelope of our subject-alignment method is signif-
icantly higher than that of single-trial based method. Figure 2
displays the comparisons of reconstruction accuracies using the
proposed and the single-trial methods in delta, theta, alpha, beta
and low gamma bands. We used a permutation test to compare
the predicted accuracy and the chance level and found that our
prediction value is 288 times larger than that of the chance level
(p < 0.05). One can see that more than 5% of the reconstruc-
tion accuracy begins to show lower than chance level in 30-40
Hz for the single-trial based method, while our method shows
significantly higher than chance level across time in this low
gamma band. The single-trial based reconstruction accuracy
was not significantly different with chance level in 40-70 Hz,
consistent with the literature [6,7]. Therefore, the results are
restricted to 1-40 Hz in Figure 2.

3.3. Reconstruction accuracies for story and time-reversed
speeches based on the proposed method

Here, the 750y and T¢ime—reverse refer to the averaged cor-
relation coefficients for story trial and time-reversed trial, re-
spectively. The chance level was also acquired by mismatching
the neural responses with stimuli data. According to the cal-
culation, the reconstruction accuracy was significantly higher
than chance level in all of these frequency bands (p < 0.05).
The detailed reconstruction results is shown in Figure 3. Fig-
ure 4 shows some examples of the reconstructed envelopes ob-
tained in our study. Our results show that neural entrainment
to speech also occurs in gamma band, which is less reported
in previous research. To clarify whether the reconstruction-
accuracy of story is higher than time-reverse speech or not,
the values of correlation coefficients were also converted to z
values using Fisher’s z transformation to satisfy normal dis-
tribution. An ANOVA test of z values with main factors of
intelligibility (story and time-reversed speech) and frequency
bands shows a significant main effect of intelligibility (F' =
78.02,p < 0.001), indicating that the neural entrainment to in-
telligible speech is stronger than to unintelligible speech in all
frequency bands (F' = 127.52,p < 0.001).



L]
]

Tstory

Ttime-reverse

Correlation coefficient
(=1
(98]
T T
(S —
[ S— —
L L

=3
)
T
. e S
] S s S
—T— d
.

0.1- ) ' .

1-3Hz 4-8Hz  9-12Hz 13-30Hz 31-40Hz 40-70Hz
Frequency

Figure 3: Correlation between the reconstructed speech
envelope and the original speech envelope based on
subject-alignment method in story and time-reversed
conditions.
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Figure 4: Examples of original and reconstructed speech
envelopes in different frequency bands.

4. Discussion
4.1. Subject-alignment method works across individuals

Tracking speech envelope based on neural signal is helpful to
answer how neural system processes the speech stimuli. In
this study, we successfully increased the tracking accuracies
of speech envelope using subject-alignment EEG signals (see
Figure 2 for the details). The result confirmed our hypothesis
that the human brain uses about the same mechanism to pro-
cess speech stimuli across individuals. The subject-alignment
method can decrease the randomly occurred physiological and
external noises effectively. In addition, we speculate that it is
difficult for subjects to fully focused on the tasks without any
distraction during the experiment, which may result in a de-
crease in task-evoked neural signals. The average of the sub-
ject aligned original EEG can reduce the unexpected random
actions and increase the certainty of the data. By comparing
with single-trial method, the more accurate tracking of speech
envelope was obtained using subject-alignment method, which
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gives a more accurate description for the neural entrainment.

4.2. Neural Entrainment reflects speech intelligibility

Neural entrainment to intelligible speech is stronger than non-
intelligible speech in all of the frequency bands, including delta,
theta, alpha, beta and gamma bands, as shown in Figure 3. As
mentioned previously [5], speech envelope is considered to be
related to syllable level of speech. Since the numbers of the
syllable boundaries of the original speech and time-reserved
speech did not change so much, and the neural entrainment to
time-reserved speech is also activated strongly, we can reason-
ably speculate that the difference in reconstruction accuracies
between accessible and inaccessible speech is caused by the
sematic processing. That is, the neural entrainment to speech
envelope reflects speech intelligibility.

4.3. The proposed method provides an possibility to study
gamma band by scalp neural signal

In previous scalp EEG/MEG studies, there is few report about
the neural entrainment to speech envelope in gamma bands.
Moreover, many studies reported that envelope reconstruction
accuracy above 12 Hz is lower than chance level [7,14,19]. The
main finding of neural response in high frequency gamma band
is reported by some intracranial electrography studies, and they
indicate that gamma frequency band may represent lexical and
linguistic process (see review [20]). However, the intracranial
electrography is not friendly to healthy people. Therefore, the
finding of neural tracking of speech envelope in gamma band
by proposed method provides a possibility to address the neural
mechanism of the gamma band by scalp EEG in the future.

5. Conclusions

In this study, we hypothesized human brain function for speech
processing is consistent across individuals. Then, we proposed
a method to align the subject data for the same stimuli to en-
hance the neural entrainment to speech in EEG data. Based on
the subject-alignment method, the correlation between the re-
constructed speech envelope and the original one improved to
about 0.5, and the error reduction rate was around 33% com-
paring with the best envelope reconstruction accuracy of 0.25
in the previous studies [14, 19]. It is found that neural entrain-
ment to speech also occurs in gamma band, which could not
be observed in previous studies except for the invasive methods
such as intracranial electrography. For the difference between
the reconstruction-accuracy of story and time-reversed speech,
one reasonable explanation is that neural entrainment involves
in the processing of the semantic information. Therefore, the
neural entrainment to speech reflects high-level linguistic pro-
cess to some extent.

However, in this study, we ignore that the time-delay is spe-
cific for different subjects. Although, we assume that the TRFs
is consistent for all subjects, in fact, the latency of neural re-
sponse may be not the same across subjects. Therefore, future
work should estimate and align the time delays for different sub-
jects respectively, which possibly gets better results.
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