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Abstract
Text-to-Speech synthesis (TTS) based data augmentation

is a relatively new mechanism for utilizing text-only data to
improve automatic speech recognition (ASR) training without
parameter or inference architecture changes. However, efforts
to train speech recognition systems on synthesized utterances
suffer from limited acoustic diversity of TTS outputs. Addition-
ally, the text-only corpus is always much larger than the tran-
scribed speech corpus by several orders of magnitude, which
makes speech synthesis of all the text data impractical. In this
work, we propose to combine generative adversarial network
(GAN) and multi-style training (MTR) to increase acoustic di-
versity in the synthesized data. We also present a contrastive
language model-based data selection technique to improve the
efficiency of learning from unspoken text. We demonstrate
that our proposed method allows ASR models to learn from
synthesis of large-scale unspoken text sources and achieves a
35% relative WER reduction on a voice-search task.
Index Terms: Speech Synthesis, Speech Recognition, Genera-
tive Adversarial Network, Contrastive Data Selection

1. Introduction
End-to-End (E2E) automatic speech recognition (ASR) has be-
come popular as a result of recent advances in neural modeling
of context and history in sequences [1, 2]. Nevertheless, it
needs a larger amount of transcribed speech data to perform
well [3]. Several fusion-based approaches to incorporating a
traditional language model (LM) into E2E ASR frameworks
were introduced in [4, 5]. However, incorporating these tra-
ditional LMs and the corresponding decoding techniques into
E2E systems [6] can be difficult, while complicating the in-
ference framework [5]. The recently introduced Hybrid Au-
toregressive Transducer (HAT) model offers one approach to
evaluate the value of an external, traditional language model in
the E2E framework but concludes that further in-depth analysis
is needed before a complete E2E model can be built [7].

Speech synthesis (TTS) based data augmentation paves
the way for utilizing text-only data in a novel manner to im-
prove the ASR model. As state-of-the-art speech synthesis
can be indistinguishable from human speech [8, 9], it can be
utilized to synthesize text-only data which can subsequently
serve as additional training data for ASR [10–13]. Such ap-
proaches do not require ASR parameter or inference architec-
ture changes [13, 14]. However, efforts to train speech recog-
nition systems on synthesized utterances suffer from limited
acoustic diversity of TTS data. Synthesized speech exhibits
much less variation than real speech, and almost no speech
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disfluencies. Previous work shows that ASR models trained
mostly on synthesized data are hard to generalize to real speech
utterances [15]. Additionally, prior work has limited the use
of synthetic corpora to sizes similar to the transcribed speech
corpus [12–14]. Encoding speech signals needs more memory
than encoding text, while the conversion between speech and
text modalities in TTS inference and ASR training adds to the
computational load. These factors make the synthesis of all
available text impractical. Moreover, the large differences be-
tween spoken and written material requires intelligent strategies
to balance their contributions [15].

In this work, we propose to combine generative adversarial
networks (GANs) [16] and multistyle training (MTR) [17] to
increase the acoustic diversity of synthesized data. Previous
work has applied GANs in TTS to achieve high quality and
fidelity [18]. The motivation behind this work is to drive TTS
audio closer to the acoustics seen in ASR training corpora under
more challenging acoustic environments. Therefore, to train
robust ASR models, we inject noise in a tiled fashion and apply
SpecAugment [19] to the synthesized audio. Next, to realize the
potential of large-scale text corpora, we introduce contrastive
language models to select data from unspoken text for syn-
thesis. Lastly, we include a diverse, on-the-fly realization of
each selected sentence during ASR training for efficiency. We
demonstrate how this significantly improves the efficiency of
unspoken text learning through TTS.

2. Speech Synthesis for Speech Recognition
TTS based data augmentation is a successful, novel approach
to utilizing large-scale, text-only data to improve ASR. Such
approaches add a TTS module during training but do not re-
quire changes to the ASR model architecture. State-of-the-art
synthesized speech can be indistinguishable from human speech
in quality. Nevertheless, synthesized speech exhibits much less
variation than real speech. This prevents ASR models trained
on it from generalizing well to real scenarios.

2.1. Speech synthesis Model

To synthesize a diverse set of speaker and noise characteristics,
we base our TTS model on Tacotron 2D [8, 20], which takes
text sequences as input, conditioned on speaker embeddings and
outputs a sequence of Mel spectrogram frames. The autoregres-
sive decoder network uses the phoneme encoding of the input
sequence and combines it with a speaker embedding obtained
from a separately trained speaker encoder [20]. We directly
generate Mel-filter bank features as input for training ASR mod-
els. We never synthesize waveforms, thereby eliminating the
need for any vocoder. To model prosody and increase its vari-

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-1475556



ability during inference, we further augment the model with a
variational auto encoder (VAE) as in [21]. We modify its global
VAE to a hierarchical version [12]. This helps in capturing
local and global speaking styles separately and make TTS more
stable. The hierarchical VAE includes a local encoder which
encodes fixed two-second chunks with a one-second overlap
and a global encoder encodes the whole utterance.

2.2. Consistent predictions on synthesized speech

A consistency loss term [13] to encourage the ASR model to
generate consistent predictions on both real and synthesized
presentations of the same utterance is included in the training
objective. This is done by minimizing divergence between pre-
dictions based on real speech and TTS speech, Jcons(θ). By
behaving similarly in response to real and synthetic input, the
model learns from optimization on synthetic training data with
greater impact on real evaluation data. In the case of transcribed
material, I, we use two cross-entropy supervised loss terms
from real speech, Jreal(θ) and TTS speech, Jtts(θ), along
with the consistency loss for transcribed data. For unspoken
text, N, we use cross-entropy based supervised loss terms from
TTS speech only. Our overall training objective is, thus:

min
θ
JASR(θ) = λrJ (I)

real(θ) + λtIJ
(I)
tts(θ)+

λcJ (I)
cons(θ) + λtNJ

(N)
tts (θ)

(1)

3. Proposed method
3.1. Generative adversarial network (GAN) based TTS

It is challenging to train a TTS model using ASR training
corpora [12] because of speaker biasing and adverse acoustic
environments. However, if the TTS model is trained on clean
TTS corpora, the distinct acoustics inferred by it is not di-
verse. Therefore, we finetune a well-trained TTS model from
Section 2.1 to synthesize features resembling that of an ASR
training corpus and use this model to synthesize unspoken text.
The motivation of applying a GAN to finetune the TTS model is
to synthesize audio with similar acoustics as the ASR training
corpus under adverse acoustic environments. On the contrary,
previous work have applied GANs in TTS to achieve high qual-
ity and fidelity [18, 22].

The framework of the GAN based TTS model jointly
trained with the E2E ASR model is shown in Figure 1. As the
post-processing network (PostNet) of the Tacotron model [8]
can see the full decoded sequence, it is reasonable to inject
background noises at this stage to meet our motivation of
matching acoustics of the ASR corpus. Therefore, we update
only the Postnet. The generated TTS feature G(y) is fed
into the discriminator D(·). The discriminator distinguishes
between ASR features x and the TTS variants. However, for
unspoken text, only synthesized features are available. There-
fore, we randomly pick a real feature x̂ derived from the speech
corpus and feed it to the discriminator.

As mentioned earlier, a consistency loss term helps with the
intelligibility of the synthesized speech. We also synthesize the
same unspoken text using a reference E2E TTS model Gref (·)
with the same architecture. We calculate the mean squared
error (MSE) loss between the spectra from this model and the
GAN-based TTS model, while back-propagating gradients only
through the GAN-based TTS model. This loss serves as a
regularizer and ensures that the TTS model is not driven too
far by GAN training. The final criterion using unspoken text y

Figure 1: Generative adversarial network (GAN) based TTS
joint training framework. The colored boxes are trained while
other parts are fixed.

and randomly selected feature x̂ is as follows.

min
θ
JTTS(θ) = E(x̂,y) min

G
max
D

[log(1−D(G(y)))+

logD(x̂)] + λcons min
G
‖G(y)−Gref (y)‖

(2)

where the first two terms represent GAN training and the last
term is the consistency loss. We use λcons = 0.1 here.

3.2. Contrastive unspoken text selection

Although the text-only corpus is always much larger than the
transcribed speech corpus, most of the previous work limit the
size of synthetic corpora be similar to the transcribed speech
corpora. There are several challenges in synthesizing large-
scale text corpora: i) Encoding speech requires a lot more than
text 1, thereby rendering converting all text to speech imprac-
tical. ii) The computational costs associated with the joint
training of ASR and TTS are quite high. State-of-the-art ASR
models are generally trained using several thousand hours of
speech [3, 23], which in iteself is a relatively small fraction of
synthesized speech from all available text corpora. iii) Intelli-
gent strategies are needed to balance the contributions of written
and spoken material [15].

In this section, we propose techniques for text selection that
will help realize the potential of large-scale text corpora as a
source for augmenting ASR training corpora. The selection
aims to improve the match between the selected subset and the
desired ASR application. This, in turn, reduces the computa-
tional resources needed to benefit from the availability of a large
amount of non-domain-specific data. Similar data selection
methods were first proposed in language modeling [24,25] with
the intent of improving performance rather than reducing the
computational overhead.

The proposed algorithm is as follows. We build two lan-
guage models [25, 26] to contrastively select from unspoken
text: a background model B, trained on the entire unspoken text
corpus, and an in-domain model D, obtained by interpolating
the background model with an LM trained on the transcriptions
from the ASR corpora. We assume that the transcribed ASR
material matches the domain of interest. We evaluate each sen-
tence in the unspoken text corpus using the following equation:

S =
logP (w|D)− logP (w|B)

#(w)
(3)

where, the probabilities from the two language models are com-
pared, normalized by the number of words to eliminate any

1for example, 16KHz 960-hour Librispeech corpus takes 100GB
while its ASCII transcription only takes 100MB.
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length bias. We select the sentences with the top S scores,
thereby, selecting sentences that are relatively close to the do-
main of interest D. We use N-Gram LMs for both the back-
ground and adapted LMs 2.

An alternative approach to the above unspoken text se-
lection is the sampling of data from a well-trained language
model [12]. Here, we train a large maximum-entropy language
model using all the available text corpora and adapt it towards
the spoken domain [27]. Assuming that the model learns the
distribution of the entire data, we sample a fixed number of
sentences from this language model.

3.3. Noise Injection

To regularize ASR training on synthetic speech and prevent
over-fitting to the synthesized spectra, we apply SpecAug-
ment [19] and multistyle training (MTR) [17] on the synthe-
sized data. Notably, this is different from [14] in that SpecAug-
ment is applied not only on real speech but also on the TTS
audios. We further inject different varieties of environmental
noises to TTS audios with random signal-to-noise ratios as a
form of MTR [28]. The noise snippets used here, originate
from a collection of several real-life noises detailed in [28].
The snippet is additively tiled along the time dimension of the
synthesized audio. MTR aims to make the acoustics of synthetic
speech closer to the adverse characteristics commonly seen in
usage of ASR systems [28], while SpecAugment has proven to
be a strong regularization approach to train robust E2E ASR
models.

3.4. Putting it all together

This section presents the framework to generate on-the-fly,
acoustically diverse realizations of the sentences selected using
the methods proposed in Section 3.2. Within each batch, the
framework randomly mixes transcribed speech, selected unspo-
ken text, speaker embedding to use in the Tacotron 2D TTS
model (Section 2.1) and the MTR noise sources. For each utter-
ance in the transcribed speech corpora, we infer the VAE latent
variable given the acoustic feature. We randomly assign a VAE
latent variable for each unspoken text sentence from within
this set. Next, we randomly shuffle speaker embeddings, VAE
latent variables and MTR noise sources within each training
batch. The shuffling provides a diverse combination of speaker
characteristics, prosody and background noise with which to
synthesize each sentence. The GAN TTS and ASR model are
trained jointly with the training batches constructed on-the-fly
in the manner described above.

The size of text-only corpora are several orders of magni-
tude larger than the size of transcribed speech corpora. Even
with contrastive data selection, balancing these two sources
is critical to train ASR Models. We use a curriculum train-
ing [29] strategy to balance the contribution of written and spo-
ken source material. The proposed curriculum training begins
with a large portion of transcribed speech data in each batch
and gradually reduces it during training. While decreasing the
amount of transcribed speech in each batch, we increase the
weights λr and λc in Equation (1) to keep their loss contribu-
tions the same. We find that this strategy has the added benefit
of speeding up model convergence, a key factor to consider
when incorporating large quantities of synthesized material.

2We experimented with training N-Gram language models and neu-
ral network-based language models (NNLM) for both the background
and adapted LMs. Both types of LMs yielded similar results.

4. Related Work
Incorporating text through the use of decoding or rescoring
methodologies in E2E ASR [5,6,30,31] can result in a complex
inference framework. TTS based data augmentation allows E2E
models to utilize text-only data efficiently, without any changes
to the decoding or inference architecture. SpeechChain [10,11]
while utilizing TTS as an data augmentation method for ASR,
allows for the joint training of both models. Cycle consistent
loss was proposed to bridge the representation mismatch be-
tween TTS and ASR systems [32,33]. In [34,35], an alternative
approach to address this mismatch involves sharing encoders
and decoders between TTS and ASR.

The following highlights the differences between prior
work and the proposed method in this paper. Our motivation for
applying GANs in TTS is to synthesize audio representing ad-
verse acoustic environments similar to what is seen during train-
ing by ASR models. Our method can also be viewed as using
GANs to augment the synthesized data similar to [36]. With this
motivation, we only update the PostNet of the TTS model and
jointly train it with the ASR model. We also introduce a con-
sistency loss to maintain intelligibility of the synthesized data.
Additionally, we combine GAN TTS training with traditional
data augmentation methods like multistyle training (MTR) [17]
and SpecAugment [19]. Notably, this is different from [14] in
that SpecAugment is applied on not only real speech but also
on the synthesized features to regularize the ASR training on
synthetic speech.

To the best of our knowledge, this is the first work that
introduces text data selection for TTS based data augmentation.
As explained in Section 3.2, while the data selection method it-
self is similar to what has been previously proposed in language
modeling, its application to reduce memory and computational
load in the joint training of TTS and ASR is novel.

5. Experiments
5.1. Experimental Setup

The ASR model presented in this paper is a listen-attend-spell
(LAS) [37] model which includes two convolutional layers of
32 filters with shape 3 x 1 and a 2 x 2 stride, followed by
four bidirectional LSTM layers of 1024 units for each direc-
tion [13, 37]. The decoder contains two unidirectional LSTM
layers with 1024 units and graphemic targets. The architecture
of the TTS model is similar to the model described in [8, 13]
with the addition of hierarchical VAE [21] discussed in Sec-
tion 2.1. The decoder is followed by a PostNet with five convo-
lutional layers of 512 filters with shape 5 x 1. The discriminator
in GAN training also comprises of five convolutional layers
followed by a softmax.

Figure 2: Sample TTS output w/ and w/o GAN training. Com-
paring (b) and (c) shows the injected noise from PostNet.
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The TTS model is described in [12, 13, 38] and was trained
on the segmented Librispeech corpus. The speaker embeddings
are learnt from that. The ASR model is trained on an internal
corpus of isolated sentences, presented in [12], containing 76
hours of voice search queries. The external text corpus for data
selection comprises of anonymized and aggregated typed search
query data. The background LM for data selection was trained
on this external text corpus, while the adapted LM was trained
on the transcribed speech used for training ASR models.

5.2. Results

The baseline model is trained only on transcribed speech with
SpecAugment resulting in a WER of 18.5% (Row 1 in Table 1).
When data augmentation with consistency loss [13] is applied
between two SpecAugment copies of transcribed speech, a
stronger baseline with a WER of 18.2% is obtained (Row 2 in
Table 1). Adding synthesized data derived from the transcribed
speech corpus in conjunction with SpecAugment applied to the
synthesized data results in further improvement, resulting in a
WER of 17.1% (Row 3 in Table 1). Next, we randomly select
30M text sentences and integrate the proposed curriculum train-
ing routine (Section 3.4). The result is shown in the fourth row
with a reduction in WER to 16.2%, consistent with the work
presented in [12]. We attribute this relative improvement of
5% relative only to the fact that synthesized speech exhibits
much less variation than real speech, causing the ASR model
to overfit to mismatched acoustics. To obtain further improve-
ments from external text and overcome the overfitting issue, we
first integrate SpecAugment & MTR based data augmentation
schemes described in Section 3.4. As can be seen in the fifth
row of Table 1, we see a reduction in WER to 13.3%, a re-
duction of 22% relative in WER. The next three rows present
the additional improvements obtained using the proposed GAN
TTS and contrastive data selection methods. Collectively, the
proposed methods reduce the WER to 11.0%. Overall, we
achieve a relative 35% improvement in performance over a
strong baseline. Figure 2 illustrates an example of synthesized
spectra after GAN training. We can see that TTS introduces
different noise patterns compared to traditional augmentation
schemes such as SpecAugment & MTR. We believe that this
diversity is one major source of improvement.

Table 1: Performance of the Proposed Method

Method Unspoken Text WER

SpecAug × 18.5
+ Consistency loss × 18.2

+ TTS (w/ SpecAug) × 17.1

+ TTS (w/o SpecAug)
√

16.2
+ SpecAug & MTR

√
13.3

+ GAN TTS
√

12.2
+ Data selection

√
11.5

+ GAN TTS
√

11.0

5.3. Ablation Study

Table 2 summarizes our efforts to increase acoustic diversity
of TTS. Both SpecAugment and MTR obtain additive improve-
ments, consistent to previous data augmentation research [19],
while GAN TTS obtains further improvement of relative 8.3%.
The difference between data augmentation methods and the pro-

posed GAN TTS is that the former focuses on increasing acous-
tic diversity by noise injection while the latter tries to match
acoustics to that of the transcribed speech corpus under adverse
environments. We hypothesize that GAN TTS can help in cases
where target acoustics cannot be simulated by SpecAugment
and MTR.

Table 2: Noise Injection on the TTS Output

Method on Unspoken Text WER

TTS (w/o SpecAug) 16.2
+ SpecAug 14.0

+ MTR 13.3

+ GAN TTS 12.2

Table 3 shows the effect of the amount of unspoken text
based TTS data on ASR performance, where more data always
yields better results. We believe this improved result, com-
pared to the findings in [12], can be attributed to the increased
acoustic diversity and on-the-fly learning framework proposed
in Section 3.4

Table 3: The Amount of Unspoken Text v.s. WER

# of Unpaired Text Utt. WER

0 17.1

1M 14.7
5M 13.7
30M 13.3

To understand the impact of data selection, Table 4 com-
pares the proposed contrastive selection method with the data
sampling method [12] discussed in Section 3.2. It can be seen
that data selection obtains larger gains, which not only indicates
that the selection metric is effective but also shows the advan-
tage of using real data versus data generated from sampling
methods.

Table 4: Unspoken Text Selection (30M utterances) v.s. WER

# of Unpaired Text Utt. WER

Random 13.3
Sampling from LM 12.5

Contrastive selection 11.5

6. Conclusions
We have shown that generative adversarial network (GAN)
and multistyle training (MTR) are complimentary in increasing
acoustic diversity of synthesized data. Contrastive language
model based data selection combined with curriculum train-
ing is key to learning from synthesis of large volumes of text.
Together, these two proposed strategies yield a large reduction
in WER of 35% relative over a state-of-the-art baseline on the
described train and test sets.
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