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Abstract

We present a new database of voice recordings with the goal
of promoting research on protection of automatic speaker ver-
ification systems from voice spoofing, such as replay attacks.
Specifically, we focus on the liveness feature of live speech,
i.e., pop noise, and the corresponding voice recordings without
this feature, for the purpose of combating spoofing via liveness
detection. Our database includes simultaneous recordings using
a microphone array, as well as recordings at various distances
and positions. To the best of our knowledge, this is the first
publicly available database that has been particularly designed
to study the liveness features of voice recordings under various
conditions.'

Index Terms: replay attack, spoofing attack, pop noise, micro-
phone array, voice corpus

1. Introduction

Utilizing automatic speaker verification (ASV) as a form of bio-
metrics authentication is finding real-life applications and gain-
ing traction. For example, the Android operating system now
allows users to unlock their smartphones by voice.? Voice bio-
metrics solutions are also deployed to support financial services
over the phone.3 Moreover, recent advances, such as the use of
x-vector [1], have dramatically improved the ASV performance
and show potential for mass adoption.

On the other hand, ASV is susceptible to spoofing attacks.
Spoofing may be conducted simply by replaying the recorded
voice or through impersonation [2, 3]. More sophisticated at-
tacks utilizing speech synthesis techniques are also feasible.
Recent voice conversion and text-to-speech methods have ad-
vanced to the levels that are capable of producing nearly natural
speeches [4, 5].

Defending ASV against spoofing attacks is an active re-
search area. Most strategies focus on detecting artificial fea-
tures in the spoofed speech which is not found in natural speech
[6, 7]. This typically involves selecting a discriminative fea-
ture (front-end), and designing a good classifier (back-end), al-
though end-to-end methods involving deep learning are gaining
traction as well. See [8] for a comprehensive review.

The approaches mentioned above focus on exploiting the
features found in the collected speech signals. Another defense
strategy against spoofing attack is to make use of supplemen-
tary information such that liveness detection is possible. This
approach aims to verify that an input is from a live speaker and
not just the recording via additional information obtained dur-
ing data acquisition. Various strategies have been proposed. In
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[9], two microphones were used to capture the time-difference-
of-arrival (TDoA) changes in a sequence of phoneme sounds.
[10] used the built-in speaker of a smartphone as a Doppler
radar to transmit high-frequency acoustic sound and used the
microphone to monitor the unique articulatory gesture of the
user. Liveness detection using throat microphones has also been
proposed [11].

In this work, we focus on liveness detection using pop
noise. Pop noise is a phenomenon where the loudspeaker re-
produces commonly unwanted noises due to the microphone
picking up a variety of breathing noises. While such noise is
reduced in far-field liveness detection settings, the microphone
is usually placed close to the user and is able to capture such
kind of acoustic features in most ASV applications. It is there-
fore a suitable feature for differentiating a live speech from a
spoofed/replayed one within the liveness detection framework.
Moreover, unlike the aforementioned detection methods, de-
tecting pop noise is relatively simple, i.e., utilizing built-in mi-
crophones is in principle sufficient.

The major purpose of this paper is to present a new
database, POCO (POp noise COrpus), to allow systematic
study of pop noise. Existing publicly available databases have
been focusing on spoofed speeches instead of features related
to liveness. For example, the Reddots Replayed data set [12]
provides a wide variety of recordings and re-recordings to facil-
itate the study of anti-spoofing. The 2019 ASVspoof challenge
[13] includes data simulating physical environments and syn-
thesized speech data (utilizing state-of-the-art speech synthesis
methods). Our work aims to close this gap in the literature by
providing a pop noise database that assesses the liveness feature
of ASV.

This paper is organized as follows. We first motivate our
study by comparing the current work with other works in the
literature. Then, we illustrate how we collected the data. We
explain in detail our strategies, processing techniques, as well
as equipment and material used. Subsequently, we present the
results of analysis based on several baseline methods. Finally,
we conclude with suggestions of possible future research direc-
tions utilizing this database.

2. Comparison with other works

The use of pop noise to mitigate attacks on ASV has received
little attention, arguably due to a lack of open-source database.
[14] is the first utilizing pop noise to perform liveness detec-
tion. Other studies, i.e., [15, 16], extend this idea by utilizing
phoneme-based pop noise and multi-channel pop noise detec-
tion. [17] has implemented a liveness detection system based
on pop noise on smartphones.

Unfortunately, none of the studies mentioned above is re-
producible as these studies do not make their data publicly avail-
able. We aim to provide a common database such that different
methodologies can be compared meaningfully based on it.

The size of our database is larger and more diverse than that

http://dx.doi.org/10.21437/Interspeech.2020-1243
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Figure 1: An illustration of the setting used for the POCO data
collections. Recording with pop noise, i.e., genuine recording
without a pop filter (upper figure). This corresponds to the RC-
A and RC-B subsets of data. Also shown is recording without
pop noise, i.e., genuine recording with a pop filter (lower fig-
ure). This corresponds to the RP-A subset of data.

presented in [14]. Seventeen female subjects were hired in [14],
whereas our database contains approximately 4 times more sub-
jects with nearly equal ratio of genders. Another difference is
the language used in the recordings: Japanese was used in [14]
while utterances in English were recorded in POCO.

Moreover, our collected data contain several other distinc-
tive features. First, we performed studies on pop noise with
a microphone array. Voice manipulation device with multiple
microphones are becoming popular, so this is in line with the
architecture of modern voice controlled systems. For example,
the Google Home Mini has two microphones, the Xiami Mi Al
Speaker has six microphones, and the Amazon Echo Dot has
seven microphones. Studying how pop noise depends on the di-
rection of sound source can be an important research direction.
Thus far, we find that only [18] has studied this aspect in the
context of spoofing attack.

Second, we experimented with different distances between
the microphone and the speaker’s mouth. False negatives are
expected to rise with respect to the microphone-mouth distance
for any liveness detection algorithm based on pop noise. This
serves as a future research direction to study the trade-off be-
tween security and usability within this framework.

3. Data Collections
3.1. Experimental Setups

Let us consider the attack scenario of voice spoofing. In order
to perform voice spoofing, an attacker initially has to obtain a
sample of the desired speaker’s voice. This can be done via
recording (eavesdropping) or speech synthesis. Then, the at-
tacker replays the recording, which is to be captured by the tar-
geted ASV device. In realistic cases, eavesdropping is usually
performed at long distance, such that pop noise is not recorded
in the attacker’s recording device (for example, an attacker may
secretly record the target’s conversation using his or her phone
at a public space). Furthermore, speech synthesis tools do not
usually synthesize the effects of pop noise. This defines the set-
ting of our data collections, where the illustration is shown in
Figure 1.

We emulated scenarios explained above experimentally.
We used 2 types of microphones, as described in Table 1 . We
also utilized the F8 Zoom Multitrack Field Recorder which en-
ables simultaneous recordings. Sampling rate is 22,050, and bit
rate is 24bit. Our data set is organized into 3 parts. We next
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(b) AT9903.

(a) AT4040.

Figure 2: Microphones used in the data collection (audio-
technica AT9903 and audio-technia AT4040). Red circles in-
dicate the position the subject’s mouth was directed to during
data collections.

explain each of these in detail.

Recording with microphone A (RC-A): We recorded high-
quality voices with the audio-technica AT4040 microphone.
This subset of data represents genuine speaker recordings with
pop noise. The speaker-microphone distance was fixed to be 10
cm.

Recording with microphone array (RC-B): We performed
recordings with the microphone array (audio-technica AT9903
with windscreen taken off). We used 15 microphones in to-
tal arranged as in Figure 2b. The distance between the micro-
phones was 1 cm horizontally and 1.75 cm vertically. The sig-
nals recorded by these microphones are synchronised by a pulse
signal. The microphones were labeled mic 1, mic 2, ..., mic 15,
starting from top left moving to right, the next row, etc.. This
subset of data also represents genuine speaker recordings with
pop noise. The subject’s mouth was positioned to be approx-
imately center left of the microphone array, i.e., mic 7. The
reason we chose this positioning is that we expected the pop
noise effect to be left-right symmetrical. We collected data with
the following speaker-microphone distances: 5 cm, 10 cm, and
20 cm.

Eavesdropping (RP-A): We emulated the scenario where an at-
tacker performs replay of a recording obtained at long distance,
i.e., without pop noise. This was emulated in our experiment by
recording the speaker’s voice using the audio-technica AT4040
microphone with a pop filter (TASCAM TM-AG1) located be-
tween the subject and the microphone. The speaker-microphone
distance was fixed to be 10 cm.

We consider this setup as the ideal eavesdropping scenario,
where the speaker’s voice is “replayed” perfectly, i.e., without
any artificial artifacts of loudspeaker or speech synthesis tool,
albeit without pop noise. One should be careful and take this
into account when interpreting her results using RP-A as the
above assumption may not be realistic enough depending on
the use case.

3.2. Recording Subjects and Texts

We recruited 66 subjects (34 female and 32 male) to perform
the recordings. The subjects were of various levels of English



Table 1: Microphone settings

Device Frequency response [Hz] Directionality
audio-technica AT9903 30-18,000 Omnidirectional
audio-technica AT4040 20-20,000 Cardioid

Table 2: Words and the corresponding International Phonetic
Alphabet (IPA) recorded in this work.

IPA Word IPA ‘Word IPA Word IPA Word
b bug d dad f fat g gun
h hop d3 exaggerate k kit 1 live
m summer n funny p pin r run
s sit t tip tf chip ) sham
v five w quick z his 3 division
0 thongs o] leather i} pink j you
® laugh el pay s end i be

1 busy al spider D honest ou open
5 wolf A monkey u: who a1 join
av shout 9 about es chair a: arm
3: bird o paw 13 steer U3 tourist

fluency and spoke different accents. The subjects’ age ranged
from 18 to 61. We asked each of the subject to speak the words
listed in Table 2, which cover all 44 phonemes in English.

3.3. Recordings

Recording Environment: The subjects were instructed to
speak at the center of a sound-proof room, following instruc-
tions projected on a monitor.

The subject was asked to speak the words listed in Table 2
consecutively for each set of the recordings mentioned in Sec-
tion 3.1. We asked the subjects to repeat each set of the record-
ings 3 times. In order to avoid bias, we randomized the se-
quence of words for each session of recordings.

3.4. Data Post-processing

We split the recordings (containing multiple words) to the ut-
terance (single-word) level. To do this, we utilized the Deep-
Speech API [19] and the Librosa package [20].

We first captured the first and last frames of an utterance us-
ing the DeepSpeech API. Then, we split and saved the record-
ings with an interval of 0.5 seconds before and after the captured
frames of the utterance.

The processed audio samples relying solely on the API in-
evitably contained noises such as the noises of coughing and
sneezing. At the last stage of audio post-processing, we listened
to and tuned manually all collected samples to discard such un-
wanted samples. Since the RC-B recordings of the microphone
array were performed simultaneously, we inspected only one
of the microphones’ recording and performed the same post-
processing on all other microphones’ recordings based on it.

We have processed in total 66 (participants) x 44 (words)
x 3 (sessions) x 47 (recordings) utterances.* After discarding
unwanted noises and unclear utterances, we were left with a
total of 402,391 utterances.

4. Experimentation

Pop noise appears as an irregular high energy region at very low
frequency, as shown in Figure 3. We performed baseline anal-
yses on the POCO data and present the results in this Section.
Data analysis was performed at the utterance level.

4RC-B was collected with 15 microphones at 3 different distances;
RC-A and RP-A were collected with 1 microphone each, ending up
with 47 recordings in total.
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Figure 3: An example of pop noise for the utterance “thong”.
High energy region is observed from the Figure at low frequency
from 0 to 0.1 second.

4.1. Signal processing

In order to detect pop noise, we first processed the recordings
as follows. Given a recording sample, we first removed the si-
lence frames using the Librosa package. Then, we applied the
Short-Time Fourier Transform (STFT) to convert the signal into
frequency components. An analysis window of size N, corre-
sponding to precision 10Hz in the frequency domain was se-
lected, and a hop size of M = N/8 was used over the time
frames.

4.2. Detection methods

We hereby present two methods of detecting pop noise.

Shiota et al’s algorithm: In order to detect pop noise, we de-
vised a method similar to those presented in [14]. As we are
interested in the low-frequency region of the signal, we define
the measure F, 4.4 as the average of the Fourier transform (FT)
bins within the interval [0, F,ma<] for each frame. We chose
FL maz to be 40Hz. Then, we computed the mean and stan-
dard deviation of energy over the frames. We counted the num-
ber of frames, M, containing FT, 4.4 larger than three times its
standard-deviation of the energy distribution. In [14], M > 1
was used as the criterion determining whether a sample contains
pop noise or not. We found that choosing the threshold M > 2
was a better choice at obtaining optimal precision and recall.
Machine learning algorithm: We treated the task of detecting
pop noise as a binary classification problem and solved it using
machine learning methods. Samples from the RC-A data were
labeled positive, and samples from the RP-A data were labeled
negative. Let us now describe how we chose the input features
to be fed to the machine learning models.

We first normalized F7, 4.4 as defined above to zero mean
and unit standard deviation with respect to the frames. Then,
we chose the 10 frames with the largest normalized F'L, 44 and
concatenate them in the descending order to treat them as the
features of the machine learning models. We used the linear
support-vector machine to classify the data. We also found that
it performed better than the random forest algorithm.

4.3. RC-A and RP-A

Combining RC-A and RP-A, we present the performance of the
pop noise detection algorithms described above.

Shiota et al’s algorithm: For each word, we defined the num-
ber of true positive as the number of RC-A events detected as
pop noise, true negative as the number of RP-A not detected as
pop noise, false positive as the number of RP-A events detected
as pop noise, and false negative as the number of RC-A events
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Figure 4: Distribution of confusion matrix components, where
the RC-A and RP-A data are used. The Shiota et al’s algorithm
described in text is used to determine if an utterance contains
pop noise. Ground truth labels are fixed as follows: utterances
from RC-A (RP-A) is labeled as positive (negative).
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Figure 5: Word-speaker accuracy matrix, where the RC-A and
RP-A data are used. The Shiota et al’s algorithm described
in text is used to determine if an utterance contains pop noise.
Ground truth labels are fixed as follows: utterances from RC-A
(RP-A) is labeled as positive (negative).

not detected as pop noise.

We show the results in Figure 4. Words that are expected to
produce pop noise, such as “exaggerate”, “wolf” and “laugh”,
true positives were relatively high, indicating that the pop noise
feature is well captured by the algorithm.

Words such as “open” and “be” do not produce pop noise.
Hence, for these words, the number of true positive and true
negative are expected to be roughly the same. There are though
exceptions to these, for example, “you”.

Our observation was that, while the algorithm presented

in [14] is able to approximately capture the properties of pop
noise, it is rather simple and does not generalize well to all
speakers. We also show the performance with respect to speaker
in Figure 5. This could indicate that a more personalized pop
noise detector should be designed to adapt to the unique char-
acteristics of an individual in realistic applications.
Machine learning algorithm: We trained and performed a 5-
fold cross-validation on the data. The mean accuracy score of
each word is shown in Figure 6. It is observed that, for words
producing pop noise, such as “wolf”’, “pay” and “paw”, the
accuracy scores are relatively high (i.e., up to 0.8). For other
words, the difference in the accuracy scores is relatively mild.
It should be noted that, the main purpose of this work is to pro-
vide a public database of pop noise, and the analysis presented
here should be treated as the baseline to be compared with more
sophisticated analyses in the future.
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Figure 6: Mean accuracy scores of each word, where the RC-A
and RP-A data are used. The machine learning (SVM) algo-
rithm described in text is used to determine whether an utter-
ance contains pop noise or not. Ground truth labels are fixed
as follows: utterances from RC-A (RP-A) is labeled as positive
(negative).
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Figure 7: Pop noise detection rates of each word, where the
RC-B data are used, and the Shiota et al’s algorithm is applied.
Here, we compare the detection rates of mic 7, positioned 5 cm
away from the subject, with those of mic 15, positioned 20 cm
away from the subject.

44. RC-B

Using RC-B, we briefly studied how the pop noise effect
changes with respect to the position and angle of the micro-
phone relative to the mouth. Utilizing the Shiota et al’s algo-
rithm described above, we compared the effects of pop noise
between a microphone located at the center of the mouth (mic
7), positioned 5 cm away from the subject, and a microphone
located at the bottom right (mic 15), positioned 20 cm away
from the subject. It can be observed from Figure 7 that, mic
7 generally detects utterances with pop noise more frequently
than mic 15. This is not surprising, as the pop noise feature is
better captured by the microphone located nearer to the subject.

5. Conclusion

We have presented and described the POCO database, which
focuses on pop noise as a liveness feature for ASV. Recordings
of voices with and without using a pop filter, and recordings
utilizing a microphone array at various positions have been per-
formed. We have also analyzed the collected data utilizing sev-
eral methods.

We hope that this database can serve as a foundation for
future liveness detection research that focuses on utilizing pop
noise. Some possible future research directions include the fol-
lowing. One can consider strengthening security by additionally
incorporating a replay detector, which acts as a defense against
replay attacks, including the threat of replaying voices with pop
noise. Some other sophisticated related impersonation attack
scenarios are worth studying as well, e.g., bypassing the pop
noise detector by imitating/synthesizing the noise of breathing
while replaying the “clean” recording.
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