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Abstract

We investigate and explore the interplay of credibility and ex-
pertise level in text and speech. We collect a unique domain-
specific multimodal dataset and analyze a set of acoustic-
prosodic and linguistic features in both credible and less cred-
ible speech by professionals of varying expertise levels. Our
analyses shed light on potential indicators of domain-specific
perceived credibility and expertise, as well as the interplay in-
between. Moreover, we build multimodal and multi-task deep
learning models that outperform human performance by 6.2%
in credibility and 3.8% in expertise level, building upon state-
of-the-art self-supervised pre-trained language models. To our
knowledge, this is the first multimodal multi-task study that
analyzes and predicts domain-specific credibility and expertise
level at the same time.1

Index Terms: multimodal learning, multi-task learning, com-
putational social science, computational paralinguistics

1. Introduction
We are faced with such dilemmas in social situations at all
times: assessing the credentials of an acquaintance who claims
to be a research scientist specializing in speech recognition, de-
termining if a sommelier who recommends a particular wine is
trustworthy and knowledgeable, choosing which lawyer to han-
dle your case based on consultation and related documents, and
deciding whether to trust your mechanic to replace a part of
your car that you know nothing about. What all of these scenar-
ios share in common is the fact that without enough domain
knowledge, it would be challenging to make informed judg-
ments or decisions, because of the difficulty of accurately gaug-
ing the level of expertise and credibility of the supposed expert.
Despite the practical relevance and importance of detecting
credibility and levels of expertise in text and speech, research
on this front has been scarce. It is partly because large-scale
datasets with groundtruth labels of credibility and expertise are
difficult to come by. It is only in rare cases can we clearly define
the level of expertise and disambiguate credibility in the wild.
In the present study, we present a unique domain-specific cor-
pus of text and speech, collected from field experiments with
groundtruth labels, which allows us to investigate automatic de-
tection of credibility and expertise. More specifically, we ad-
dress the following questions:

1. What are the respective indicators of credibility and ex-
pertise, and how do they differ or overlap?

2. Are there any significant individual differences in such
indicators?

3. Can we improve on human performance with a multi-
modal and multi-task classification framework?

1Work done at Cornell University.

2. Related Work
In terms of detecting expertise, the most relevant research
stream is perhaps meeting analysis, where research activity has
focused on speech recognition in meetings [1, 2], topic detec-
tion [3], role and expertise detection [4, 5], among others. The
current study deviates in that it studies a unique but more gen-
eral setting where a professional is pitching to a target client a
product or service with a question and answering session that
follows. What separates the current study apart is the unique
insights into the interaction of expertise and credibility from a
multimodal perspective, as well as the performance gain over
human non-experts with a multi-task framework.
Credibility detection has been vetted in other contexts: [6] pre-
dicted credibility in community question answering forums us-
ing text, whereas the current study focuses on both acoustic-
prosodic and linguistic features. Meanwhile, discreditable be-
havior such as deception and hiding information has been stud-
ied too. In this sense, this paper relates to detecting concealed
information [7] and deception detection in both text [8, 9, 10]
and speech [11, 12, 13], including perceived deception detec-
tion [14]. As opposed to deception or information concealment,
credibility is inherently subjective and therefore more suscepti-
ble to idiosyncrasies, making it arguably less predictable. How-
ever, it is likely that the same rationale of changes in cognitive
load applies in the current setting.
Automatic fact-checking attracted much interests [15, 16] over
time, especially NLP in the contexts of journalism and politics.
So is the research stream on factual accuracy most evident in
evaluating NLP tasks such as summarization and/or translation
[17, 18]. While we defined and automated the measurement
of domain-specific factuality detailed in Section 4.2, our con-
tributions lie in proposing and demonstrating factuality to be a
statistically significant indicator and useful feature of automatic
detection of credibility and expertise level, how it affects credi-
bility and expertise predictions differently, and how to leverage
it to better detect credibility and expertise levels.
Methodologically, our multimodal deep learning model ex-
tends the memory-efficient BERT [19] — ALBERT [20] —
with a speech segment encoder. Perhaps closest in spirit to
ours is SpeechBERT [21], which is an end-to-end cross-modal
transformer-based pre-trained language model for spoken ques-
tion answering. While applicable, our problem and setting are
different in that audio signals provide additional useful infor-
mation for downstream tasks, instead of as inputs to ASR for
training end-to-end with downstream NLP tasks. Moreover, we
couple it with a single multi-task model with auxiliary tasks and
a dynamic training schedule to avoid catastrophic forgetting.

3. Data Collection and Processing
3.1. Sales Pitch Dataset

We collected a unique multimodal dataset of wine professionals
at different expertise levels and perceived credibility pitching
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wines to and fielding questions by potential customers. Specifi-
cally, each session of sales pitch starts with a wine professional
describing a wine of interest by introducing various aspects of
it including its flavor profile, the grape varietal, the region, the
vintage, and the producer, among other relevant information. It
is followed by additional questions from an informed customer
and the wine professional’s responses.
We recorded 81 sessions with a total of 43 professionals and
collected factual information sheets of wines featured in each
session via authoritative channels such as producers’ or im-
porters’ websites complemented by [22, 23]. We also collected
information about the speakers’ native language (77% Ameri-
can English, the rest French, Italian, and German), gender (44%
female), professional credentials, years of industry experience,
and any specific information of the wine such as vintage, coun-
try, region, grape growing or winemaking techniques, topog-
raphy of vineyard site, soil types, climate, producer philoso-
phy, and history, etc. Additional datasets that were collected for
multi-task learning will be detailed in Section 5.3.

3.2. Annotation and Preprocessing

Groundtruth labels of expertise levels were obtained by calcu-
lating a weighted average of professional credentials and years
of experience, and converting to a binary variable of an even
split in consultation with a certified sommelier by CMS and
WSET diploma holder, who also helped to annotate the dataset
by assigning every session a binary credibility score to the wine
professional in question. Two illustrative examples of transcrip-
tions and assigned labels are shown in Table 1.

We aligned the audio samples with speaker id and product

Transcription Cr Ex
”... They also make incredible Syrahs, which I
believe were some of their first grapes planted,
and also Pinot Noirs. They just make beautiful
wines, they make Riesling, gorgeous, but I do
love their Chardonnays, a little bit richer,
a little bit fuller than Chablis....”

0 0

”... The other reason, more scientifically
is, because Syrah has so much color
pigmentation, there’s not enough juice in the
grape itself to extract all the color out, so you
need more juice, so when you crush Syrah...
As an ode to the northern Rhone tradition....”

1 1

Table 1: Examples of samples and corresponding annotations
of credibility (Cr) and expertise level (Ex).

id using Praat. We discarded sections unrelated to the sales
pitch, such as small talk, segments of others talking. The re-
maining audio samples were transcribed with Google Speech
API for automatic speech recognition, and hand-corrected after-
ward. We segmented each session into turn units, where a turn
is defined as a maximal sequence of inter-pausal units (pause-
free segments separated by a minimum pause length of 50 ms)
from a single speaker without any interlocutor speech that is
not a back channel. Labels of speaker id (and speaker meta-
data), wine identity (and product metadata) were assigned to
each turn accordingly. We define single turn segments as indi-
vidual turns of a speaker in any session separately and aggregate
them by speaker and wine as multiple turn segments.
Our classification is performed on both segmentation results of
the data, whereas statistical analyses are on multiple turn seg-

ments. The resulting corpus totaled 132 hours, and 2534 multi-
ple turn and 7934 single turn segments. 41% of turn segments
were labeled as 0 (lower credibility) and the rest 1 of credi-
bility, and the percentages associated with expertise levels are
52% for 0 (lower expertise), and 48% for 1 (higher expertise),
respectively. We randomly split our entire set into training, de-
velopment, and testing sets at the ratio of 70:10:20 separately
for single and multiple turn. Evaluation results were based on
5-fold cross-validation.

4. Feature Extraction
4.1. Acoustic-prosodic Features and Indicators

We extract 8 low-level acoustic features: intensity mean and
max, pitch mean and max, voice quality features (shimmer, jit-
ter, noise-to-harmonics ratio), and speaking quality, along with
13 Mel-Frequency Cepstral Coefficients (MFCCs) per window
of 256 frames and stride of 100 frames with softwares Praat
and Parselmouth. Following previous studies, we use OpenS-
MILE to extract the 2013 Computational Paralinguistics Chal-
lenge baseline feature set [24], and the 2009 Emotion challenge
baseline feature set [25]. The two feature sets were used in our
machine learning classification tasks. All the audio features are
z-score normalized by speaker.
Table 2 shows the statistically significant low-level acoustic fea-
tures for both the credible and the less credible based on paired
t-tests between the features of the two groups, corrected for
family-wise Type I error by controlling the false discovery rate
(FDR) at α = 0.05%.
We observe an increase in speaking duration, and a decrease in
maximum intensity and speaking rate, across all speakers (the
last column), suggesting that when speakers are perceived more
credible, they on average tend to speak with lower maximum
intensity, rate, and longer duration.
To understand the individual differences in speech of per-
ceived credibility, we report the same test statistics for speak-
ers grouped by gender, native language, and expertise level. We
find that maximum pitch is lower for male speakers perceived to
be more credible, as well as those of higher expertise levels, but
not for female speakers or individuals of lower expertise levels.
In contrast, for female speakers, perceived credibility is associ-
ated with speaking at a lower rate, for longer, and interestingly
with better voice quality. Individuals with lower expertise ap-
pear to be more credible when they speak with a lower rate.
English native speakers are perceived as more credible when
they speaker with a lower maximum intensity.
Some of these results appear consistent with previously reported
acoustic-prosodic indicators in deception [12] or information
concealment [7]. For instance, changes in maximum pitch,
maximum intensity, and speaking rate have been found asso-
ciated with untruthful speech, and gender differences have been
highlighted in various studies [12, 26, 7]. With the caveat that
perceived credibility is not necessarily equivalent to credibility,
however, with a politically neutral domain expert of ethnic mi-
nority providing the labels, we believe the distribution to be as
close to true credibility as it could be.
We conduct the same series of statistical tests for expertise lev-

els, the results of which are shown in the same table 2 indicated
with E, (E), and (-E). We did not identify statistically significant
acoustic indicators of expertise levels with corrected p-values.
Without correction, however, a higher speaking rate and shorter
duration appear to be associated with higher expertise level es-
pecially for male English native speakers, and shorter duration
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Feature Male Female Low Exp High Exp English French Italy All
Pitchmax (-C) (-C)
Pitchmean
Intensity -C (E) -C
Intensity
Rate (-C) E (-C) (-C) (E)
Duration C (-E) (-E) (-E) (-E) C (-E)
VQ (C)

Table 2: Low-level Acoustic Indicators of Credibility and Ex-
pertise. C indicates Credibility and E Expertise. (C) and (E)
indicates significant uncorrected p-values. - indicates negative
correlation.

appears to be indicative of higher expertise except in female
speakers, all of which appear intuitively plausible.

4.2. Linguistic Features and Indicators

LIWC: Following relevant literature, we extract 93 semantic
classes using LIWC 2015 [27, 28]. They include standard
linguistic dimensions, grammar, psychological processes, time
orientation, relativity, and formality.
Linguistic: We extract 11 linguistic features based on results
from previous literature. Included are binary and numeric fea-
tures capturing hedging [29], linguistic and syntactical distinc-
tiveness, subjectivity, sentiment (valence, intensity), contrac-
tion, specificity [30], breadth of knowledge, depth of knowl-
edge, and factuality [17, 18].
We measure linguistic and syntactical distinctiveness in the
same way as in [7] using a large-scale review corpus in
[31]. Subjectivity and sentiment measures were extracted with
TextBlob software.
We measure the depth of knowledge by building domain-
specific rule-based algorithms following hierarchical study
guides and practice problem sets used by wine profession-
als. Our method counts both the number and percentage of
named entities belonging to different tiers of study materi-
als , weighted by pre-specified weights calculated based on a
weighting scheme identical to term frequency inverse document
frequency (tf-idf), to assign each named entity a depth score.
We apply max pooling by speaker and session, normalized to
be within 0 and 1.
We measure the breadth of knowledge by topic diversity using
topic entropy [32] where topic distributions are derived from
a seeded LDA [33], seeded with keywords for six categories:
terrior (climate, geography, etc.), grape growing, winemaking,
maturation, wine law, and wine business.
We measure speech factuality (the extent to which the speech
is true to facts) by calculating the factual consistency of tran-
scripts against information sheets we collect for each session,
using an automatic generative method. We first train an LSTM
entity tagger trained on a large wine corpus where a vocabu-
lary from the index pages of [23] was used to create a set of
groundtruth labels of entities of location, person, organization,
product, and else. Based on the domain-specific entity tagger,
we follow [34] to automatically generate questions from the in-
formation sheets, based on which we apply question answering
[35] to the speech transcription, and the information sheets re-
spectively. We measure factuality as the distance between the
generated answers from corresponding information sheets and
speech transcriptions by F1 score.
Length and Ngrams: We include the average total number of
words in total and per sentence, the average length of words in
total, per sentence, and per word. Unigrams, bigrams, and tri-
grams are extracted.

Table 3 shows (1) the top n-gram features for perceived cred-
ible and high expertise classes from a logistic regression clas-
sifier, which yields an F1-score of 64.01% for expertise level,
and 58.72% for credibility; (2) the statistically positively (neg-
atively) significant LIWC, linguistic, and other features for both
perceived credibility and expertise based on the same statistical
tests as detailed in Section 4.1.

Consistent with results on perceived deception [14], we find

Feature Credibility Expertise

N-grams
elevation, perhaps, nose,
natural, intense, right there
(value, crisp, not unlike)

plow, savory,
lay down, natural,
percent, tension

LIWC

feel, discrep, verb, affect,
focuspast, tentat, ingest,
compare, cause;
(posemo, cogproc, funct)

compare, cause,
certain; (leisure)

Linguistic intensity, valence;
(hedging, subjectivity)

ling distinct,
specificity

Other factuality, specificity depth, #word
factuality

Table 3: Linguistic Indicators of Credibility and Expertise.
Those in parentheses are of negative statistical significance, as
opposed to positive statistical significance without parentheses.

LIWC dimensions such as clout or certain not significant indi-
cators of perceived credibility, however, certain was indicative
of higher expertise level. Likewise, more hedging is found to be
associated with less perceived credibility, echoing findings that
more filled pauses and hedge words are believed to be more
likely deceptive [14]. Contrary to previous literature [14, 7]
where specificity is shown associated with deceptive or infor-
mation concealing behaviors, however, we find greater speci-
ficity to be a significant indicator of perceived credibility and
higher expertise level in our domain-specific context, an exam-
ple of and potential explanation for which is shown in Table 1.
Another linguistic feature found statistically significant for both
is factuality, as opposed to subjectivity, which we find to be an
indicator of less credibility. Such could be explained by the
fact that experts are more likely to cite relevant facts in their
speech and thus appear less subjective. Interestingly, among
statistically significant n-grams for either credibility or exper-
tise, natural shows up as an indicator for both. We hypothesize
that it could be due to an inherent bias that most participants,
as well as expert annotators, are proponents of the natural wine
movement in the domain. Linguistic distinctiveness and depth
of knowledge are also found to be statistically significant for
expertise prediction, so is the number of words in total and per
sentence.

5. Classification Experiments
We balance our dataset by random upsampling for credibil-
ity classification, since the number of positive labels is almost
twice of negative labels.

5.1. Baseline: BiLSTM + MLP

To establish multimodal baselines , we train Bidirectional Long
Short-Term models (BiLSTM) with sequences of word em-
beddings (GloVe) pretrained on the large-scale review corpus
mentioned in Section 4.2, multi-layer Perceptions (MLP) with
acoustic feature sets, and the combinations thereof. We use
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Bayesian optimization to tune the hyperparameters (the num-
ber of hidden layers of MLP, the number of hidden units per
layer, optimizers and associated parameters, dropout rate, and
batch size), and concatenate embeddings learned from acoustic
features passed through an MLP, embeddings passed through a
BiLSTM, and a vector of additional linguistic features (detailed
in Section 4.2) for the last softmax layer. The combined model
structure follows [13], and we end up using 4 hidden layers,
each with 560 hidden units followed by ReLU, and the IS 2009
Emotion Challenge feature set for MLP. Batch Normalization,
dropout, and Adam were used in training with a cross-entropy
loss. Results are denoted as Multimodal in Table 4.

5.2. ALBERT and Multimodal ALBERT

Recent breakthroughs in language representation learning
proved self-supervised pre-trained language models [19] pow-
erful in a range of NLP tasks. We adopt the memory-efficient
version of BERT — ALBERT [20], augment it with an audio
segment encoder, and pre-train on masked multimodal model-
ing and multimodal alignment prediction tasks jointly with text
and speech, using a corpus of 104 videos (audios with English
subtitles) from the streaming service SommTV. The first task
randomly masks 15% of both words and audio segments and
reconstructs them given the remaining inputs. The second task
predicts whether a speech segment corresponds to a sentence.
To augment it with an audio segment encoder, we apply a BiL-
STM as the encoder and an LSTM the decoder, padded with
fully-connected layers. For each pair of the audio segment and
corresponding word, we add L1 loss between their embeddings
to force the autoencoder to extract semantic features while re-
taining acoustic features for reconstruction.
After pre-training, we concatenate audio embeddings with text
embeddings from transcriptions after self-attention and co-
attention mechanisms, for the downstream classification task
fine-tuning. The overall architecture is similar to SpeechBERT
[21] except that ours is based on ALBERT and additional fea-
ture vectors of individual differences are also concatenated. Re-
sults are denoted as MALBERT in Table 4.

5.3. Multi-task Learning

Based on the combined model in Section 5.2, we explore multi-
task learning by adding three more tasks that either share the
same training set or use additional datasets of (1) 81 information
or technical sheets that correspond to 81 sessions in the Sales
Pitch Dataset; (2) 96 videos of 106.4 hours with English subti-
tles as transcriptions from the streaming service SommTV; (3)
study guides and expert guides from The GuildSomm website;
and (4) the introductory and advanced course materials from
The Course of Master Sommelier. The three tasks are (1) multi-
class classification of the topic of the document or speech; (2)
binary classification of whether the study materials are of the
introductory level or advanced level; and (3) multimodal entail-
ment: given speech transcriptions and corresponding informa-
tion sheets, judge the correctness or predict their semantic rela-
tionship, where a manually annotated set of 1543 multiple turn
segments was used as groundtruths. Due to different dataset
sizes and potentially different difficulties associated with dif-
ferent tasks, catastrophic forgetting and overfitting of simpler
tasks could result. Thus we experiment with a dynamic training
schedule that cycles through each task and implements train-
ing if and only if the task per epoch validation loss is improved
more than 0.1%. Results are included in Table 4 as the last row
MTL-MALBERT.

5.4. Measuring Human Performance

We calculate human performance by providing audio segments
with corresponding transcriptions to 2 non-expert subjects and
asking them to classify into credible or not, and expert or not,
without revealing the identity of the speaker. The Cohen’s
Kappa between them for credibility turns out 0.23 and for ex-
pertise level 0.25, suggesting that it is not an easy task for
non-experts and there was some but very little consensus be-
tween them. We calculate the average F1 scores against the
groundtruch labels and use them as the non-expert human per-
formance results as is shown in Table 4.

5.5. Results

Table 4 demonstrates the F1-scores of different model archi-
tectures detailed in Section 5, against human performance de-
tailed in Section 5.4. Besides multimodal models, we also
include text-only model ALBERT pre-trained on a large cor-
pus combining reviews, study materials, and transcriptions, all
detailed in earlier sections. Across all the models, multiple
turn segmentation yields better F1-scores compared to single
turn segmentation. It is sensible because multiple turn seg-
ments contain more information especially sequential infor-
mation, contributing to better pattern learning and classifica-
tion. Consistent with [13, 7], we find multimodal models out-
perform unimodal models for credibility detection by a large
margin, and that carefully designed multi-task models further
improve the F1-score to be 6.2% higher than human perfor-
mance. For expertise detection, however, we find an effi-
cient model based on only textual information achieves an F1-
score just below human performance, upon which multimodal
models do not appear to improve. Major performance boosts
are due to carefully designed and executed multi-task models
instead, achieving a 3.8% margin over human performance.

F1-score Credibility Expertise Level
Model single turn multi turn single turn multi turn
Human NA 57.34 NA 70.52
ALBERT - Text 56.20 57.33 66.85 68.89
Multimodal 57.46 59.81 66.26 67.72
MALBERT 58.75 61.62 66.78 68.91
MTL-MALBERT 60.36 63.51 69.42 74.27

Table 4: F1-scores of Experiments vs. Human Performance

6. Conclusions, Limitations, Future Work
We presented a multimodal study of domain-specific perceived
credibility and expertise in text and speech. Our statistical anal-
yses of acoustic-prosodic and linguistic characteristics of cred-
ibility and expertise shed light on subtle cues, comparing with
and contrasting previous literature in perceived deception [14],
and untruthful speech and text [36, 7]. We built multimodal
and multi-task deep learning models that obtain an F1 score of
63.5% in predicting credibility and 74.1% in expertise level,
outperforming non-experts’ performance by 6.2% in credibility
and 3.8% in expertise level. One caveat and limitation lies in
its potential unethical applications regarding credibility predic-
tion if productized. Even though there is an even split between
sexes in training data, there is not enough racial diversity in the
subjects from whom training data was generated, which could
lead to unsatisfying performance in analyzing speech of minor-
ity groups. We look forward to future research work such as
debiasing, incorporating ASR, integrating other modalities, etc.
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chev, “Do not trust the trolls: Predicting credibility in community
question answering forums,” in Proceedings of the International
Conference Recent Advances in Natural Language Processing,
RANLP 2017, 2017, pp. 551–560.

[7] S. Hu, “Detecting concealed information in text and speech,” in
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019, pp. 402–412.
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