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Abstract

Automatic Speaker Verification (ASV) enables high-security
applications like user authentication or criminal investigation.
However, ASV can be subjected to malicious attacks, which
could compromise that security. The ASV literature mainly
studies spoofing (a.k.a impersonation) attacks such as voice re-
play, synthesis or conversion. Meanwhile, other kinds of at-
tacks, known as adversarial attacks, have become a threat to all
kind of machine learning systems. Adversarial attacks intro-
duce an imperceptible perturbation in the input signal that rad-
ically changes the behavior of the system. These attacks have
been intensively studied in the image domain but less in the
speech domain.

In this work, we investigate the vulnerability of state-of-
the-art ASV systems to adversarial attacks. We consider a threat
model consisting in adding a perturbation noise to the test wave-
form to alter the ASV decision. We also discuss the methodol-
ogy and metrics to benchmark adversarial attacks and defenses
in ASV. We evaluated three x-vector architectures, which per-
formed among the best in recent ASV evaluations, against fast
gradient sign and Carlini-Wagner attacks. All networks were
highly vulnerable in the white-box attack scenario, even for
high SNR (30-60 dB). Furthermore, we successfully transferred
attacks generated with smaller white-box networks to attack a
larger black-box network.

Index Terms: speaker verification, x-vectors, adversarial

1. Introduction

The x-vector paradigm [1], is the current state-of-the-art
(SOTA) for automatic speaker verification (ASV) used in re-
cent evaluations [2, 3, 4, 5]. ASV is applied for person au-
thentication, forensics, criminal surveillance, etc. These appli-
cations require very secure systems. Until recently, the main
threats to ASV were spoofing (a.k.a impersonation) attacks [6].
ASVSpoof challenges [7] have fostered research to investigate
spoofing countermeasures [8].

In recent times, a new type of attacks, named adversarial,
has attracted the attention of the whole machine learning (ML)
community. Adversarial attacks add a perturbation to the in-
put signal, which is imperceptible to humans, but that changes
the behavior of the ML system [9]. These attacks have been
intensively studied in computer vision [10, 11, 12, 13]. For
automatic speech recognition (ASR), most works attack end-
to-end systems [14, 15, 16, 17]. Less works approach Hybrid
ASR [18]. More recent works improve the attacks by psychoa-
coustics [19, 20], or by making the audio attacks effective in the
physical world [21]
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For speaker recognition, there are fewer studies. Early
works attack classification tasks with few speakers [22, 23].
However, they do not use SOTA systems. A very recent
work [24] attacks a public pre-trained Kaldi TDNN x-Vector
model [1], also in a small classification task. Another recent
work attacks an i-vector model [25]: also the generated exam-
ples are used to attack the black-box Kaldi TDNN model in
VoxCelebl [26] ASV task. Related to ASV, there are a few
works that attack spoofing detection systems [27, 28].

In this paper, we evaluated the robustness of SOTA x-vector
architectures, i.e., ResNet and E-TDNN, to adversarial attacks.
We considered a threat model where we add a perturbation noise
to the test waveform to create impersonation or evasion attacks
in the VoxCelebl ASV task. We adapted frequent attacks in the
literature to the verification task (most previous works deal with
classification). We considered a white-box and a black-box sce-
nario, where adversarial examples were created using a weaker
x-vector network and used to attack stronger x-vectors. We also
widely discuss the proper metrics to evaluate these attacks in an
ASV task. We concluded that we need to use calibration sensi-
tive metrics, e.g., actual DCF, to avoid sub-estimating the attack
damage. We propose representing the ASV metric against a per-
turbation budget related to auditory perception, e.g., actual DCF
vs SNR.

2. x-Vector speaker verification

The x-vector approach uses a neural network to encode the iden-
tity information in each speech utterance into a single embed-
ding vector [1]. The x-vector network consists of three parts.
First, an encoder network extracts frame-level representations
from acoustic features (MFCC, filter-banks). This is followed
by a global temporal pooling layer that produces a single vec-
tor per utterance. Finally, a feed-forward network computes
speaker class posteriors. The network is trained on a large set of
speakers, different from those that appear in the evaluation, us-
ing some form of cross-entropy loss. We employed additive an-
gular margin softmax (AAM-softmax) [29] in this work. In the
evaluation phase, the x-vector embedding is obtained from the
first affine transform after pooling, while the last layers of the
network are discarded. Different x-vector systems are charac-
terized by different encoder architectures and pooling methods.
In this work, we used a ResNet34 encoder similar to the one
in [5] with 64 to 512 channels in the residual blocks. We also
used ThinResNet34 with 16 to 128 channels, and a residual ver-
sion of Extended TDNN [30, 3], with 5 E-TDNN blocks with
512 dimension. We used mean plus standard deviation pooling
for all networks. Given an enrollment and a test utterance, we
just need to compare its corresponding x-vectors to decide if
they belong to the same or different speakers. For this, we can
use a cosine scoring or PLDA back-end [31].

http://dx.doi.org/10.21437/Interspeech.2020-2458



3. Threat model

We assumed the following threat model for the speaker verifi-
cation (ASV) task. The enrollment phase is not subjected to
attacks, so we operate as usual. We acquire one or several utter-
ances from each target speaker and compute the corresponding
x-vectors, which are stored in a database. In the test phase,
we craft an adversarial example by adding a small perturbation
noise to the original test waveform and compute the correspond-
ing x-vector. Finally, the back-end compares enrollment and
test x-vectors to decide whether they correspond to the same
(target trial) or different speakers (non-target trial). The adver-
sarial perturbation is optimized to alter the system’s decision
while remaining imperceptible for human listeners.

We separately evaluated attacks to non-target trials—to be
classified as targets—, and to target trials—to be classified as non-
targets. We will refer to these attacks as adversarial imperson-
ation and adversarial evasion, respectively. In this manner, we
intend to find out which type of trials are the most vulnerable.

First, we considered a white-box scenario, where we as-
sume that the attacker has full knowledge of the system, in-
cluding architecture and parameters. In this case, the attacker
can back-propagate the gradient of the loss function—e.g., bi-
nary cross-entropy between the system output and the adver-
sarial label-through the calibrator, back-end, x-vector network
and feature extractor up to the input waveform. Thus, the per-
turbation can be optimized by gradient descent methods. We
considered two frequent attacks in the literature (fast gradient
sign [10] and Carlini-Wagner [11]) and adapted them to ASV.

Furthermore, we considered transfer-based black-box at-
tacks. In this scenario, we assume that the attacker does not
have access to the x-vector network under attack, but he can
build his own x-vector system with a different architecture and
use it to generate adversarial examples. Then, those examples
are utilized as input to the black-box model.

4. Adversarial attacks
4.1. Fast gradient sign methods
4.1.1. FGSM

The basic fast gradient sign method (FGSM) [10] computes an
adversarial example x’ given a bona-fide audio x as
x' = x — esign(VxL(g9(x),1)) , (1)
where, for ASV, L is binary cross-entropy loss, t is the adver-
sarial label of the trial, and g(x) is the target posterior
g(x) = sigmoid(h(x) + logitPr) , 2)
where h(x) is the log-likelihood ratio (LLR) from the ASV sys-
tem and Pr is the target prior. Note that h(x) also depends on
the enrollment x-vector, we omit the dependency to keep the
notation uncluttered. From Eq. (2), also note that h(x) needs to
produce a well-calibrated LLR to properly compute the poste-
rior, and that the adversarial example will depend on the oper-
ating point defined by Pr. For this reason, we think that score
calibration is important in the context of adversarial attacks.
The coefficient € is equal to the L, norm of the perturba-
tion that we want to generate. ¢ is chosen small enough to be
undetectable. It is important to point out that this method was

designed to be fast but not to produce optimal/minimal adver-
sarial perturbations.
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4.1.2. Randomized FGSM

Randomized FGSM [32] applies a small random perturbation to
the signal before applying FGSM,

x = x + asign(N (0,1)) 3)
x' =% — (¢ — a)sign(VzL(g(X),1)) , 4)

with a < & (o = ¢/5 in our experiments). This simple method
increases the attack robustness against models that have been
adversarially trained.

4.1.3. Iterative FGSM

Iterative FGSM [12] instead of taking a single step ¢ in the di-
rection of the gradient, it takes iterative smaller steps o (o =
€/5 in our experiments),

X1 = x + clip, (x; — asign(Vx;L(g(x;),t)) -x), (5

where x{, = x, and the clip function makes sure that the L
norm of perturbation w.r.t. the original signal is smaller than
e after each optimization step ¢. This attack has better perfor-
mance than FGSM, at the cost of higher computation.

4.2. Carlini-Wagner

The Carlini-Wagner (CW) attacks [11] write the adversarial sig-
nal as x’ = x + &, and searches for the minimal perturbation &
that makes the classifier to fail. § is obtained by minimizing,

C(6) =D(x,x+0) +cf(x+9). (6)

There are three elements in the above equation. D is a
distance metric. By minimizing D, we minimize the ampli-
tude of the perturbation. For images, D is usually the pertur-
bation Lo, Lo or Lo norm. For audio, L2 norm may not be
a good choice since it depends on the duration of the signal.
Longer signals may need larger Lo perturbations. Thus the
CW optimizer configuration may depend on the signal dura-
tion. We propose two alternative metrics. First, the Lo norm
normalized by the square root of the number of samples n,
D(x,x+38) = ||8]|, /n'/?~usually known as root mean square
value (RMS). Second, the negative signal-to-noise ratio (SNR)
between the original signal and the perturbation noise (in dB),
D(x,x + 9) —SNR(x,6). We compared three distance
metrics Lo, RMS and SNR.

The function f is defined in such a way that the system fails
ifand only if f(x+9d) < 0. In[11], f is defined for a closed-set
classification problem. Here, we define f for verification as,

n_f max(0,h(x") — (6 — K))
Fx) = {max(O, “h(x) + (0 + k)

if terue = target
if t¢rue = nontarget

@)

where h(x') is the log-likelihood ratio score, 6 is the decision
threshold and & is a confidence value. Eq. (7), means that, for
adversarial evasion, we need to make the score smaller than
(6 — k); and for adversarial impersonation, we need to make
the score larger than (6 + k). Again, we note the importance of
having a well calibrated system to set the threshold 6. If we are
not sure about the operating point of the system under attack,
we can set k£ > 0 to increase the confidence that the attack will
be successful.

The weight ¢ balances D and f objectives. For each trial,
we used a binary search procedure to find the optimal c. For
each value of ¢, we optimize C'(6). If we find a solution where
f(x+48) > 0 (failed attack), we enlarge c to increase the weight
of the f objective over D, and repeat the optimization. If the
attack is successful, we reduce c.

)
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Figure 1: White-box FGSM and Carlini-Wagner attacks on ResNet34 x-vector. Upper figures show EER(%) vs SNR perturbation
budget. Lower figures show minimum DCF (dashed lines) and actual DCF (solid lines). For CW attacks, the confidence k = 0 and
num. iters in the inner loop is 10, unless indicated otherwise in the legend. Black-line indicates results without attack.

5. Benchmarking adversarial robustness

Here, we discuss how to evaluate ASV robustness to adversar-
ial attacks. Existing works compare accuracy [24] or EER [25]
w.r.t. the FGSM e parameter. However, € may not be the best
metric to evaluate the perturbation magnitude. Metrics such
as SNR or PESQ, more common in audio applications, maybe
better. Furthermore, there are attacks such as Carlini-Wagner
(CW) [11], which do not have a parameter to control the mag-
nitude of the perturbation. CW tries to find the smallest pertur-
bation that fools the system, but if the system is very robust to
attacks CW may produce a large perturbation.

The authors in [13], propose to represent accuracy against
a given perturbation budget for classification tasks. Following
that idea, we propose to represent typical ASV metrics (EER,
MinDCF, ActDCF), against the perturbation budget. A pertur-
bation budget b indicates that we do not accept perturbations
larger than b—because we want to keep the perturbation unde-
tectable. We can consider several metrics to measure the pertur-
bation. In this work, we use the SNR between the original signal
and the perturbation noise. However, this methodology general-
izes for other metrics such us PESQ, L, etc. For the examples
that we generated, the perturbation starts being slightly audible
for SNR< 40 dB. Most humans would not notice it, or they
would attribute to standard channel noise. For SNR< 20 dB,
the noise was clearly audible, but it did not contain any distinc-
tive characteristic, which a human could identify as an attack.

The method to calculate ASV performance against the SNR
budget is as follows. We assume an evaluator function E(s, t)
that computes ASV metrics given the scores s and labels t vec-
tors of an ASV task with [V trials. Let us assume that s are bona-
fide scores and s’ are the corresponding adversarial scores. Let
us assume a vector p containing the SNRs of the adversarial tri-
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als. Then, for each value of perturbation budget b that we want
to evaluate, we build a score vector §(b) with elements

P .
§i(b):{8i ifp, <bANi€e K

. i=1,...
Si otherwise ’

Ny ()
When evaluating impersonation, K is the set of non-target tri-
als; and for evasion K is the set of target trials. Finally, ASV
metrics for budget b are obtained by evaluating F(5(b), t).

For FGSM style attacks, we may want to pool together the
scores from several € values in a single curve. In such a case,
we modify (8) to choose the adversarial score from the € corre-

sponding to the lowest SNR> b.

6. Experiments
6.1. Experimental Setup

We experimented using VoxCeleb 1 and 2 datasets [26]. The
acoustic features employed were 80 dimension log-Mel filter-
banks with short-time mean normalization. We experimented
with three SOTA x-vector architectures: ResNet34, ThinRes-
Net34 and Residual E-TDNN. The networks were trained on
VoxCeleb2 dev+eval augmented 6x with noise from the MU-
SAN corpus and impulse responses from the RIR dataset. We
used cosine scoring as back-end since, for this task, it performed
better than PLDA. We evaluated on VoxCelebl Original-Clean
trial list (37k trials, 40 speakers). Note that, these experiments
have high computing cost (20 GTX 1080 GPUs were used), so
it was not feasible to evaluate on the larger Entire and Hard lists.
Scores were calibrated by linear logistic regression on the bona-
fide trials. The full pipeline was implemented in PyTorch [33]

http://www.openslr.org/resources/17
http://www.openslr.org/resources/28



Table 1: SV, systems comparison without attack.

System EER(%) Min/Act DCF(0.05) Min/Act DCF(0.01)
ThinResNet34 [26] 2.87 0.31/-
ft-CBAM [34] 2.03 -
BLSTM-ResNet [35] 1.87 -
ResNet34 [5] 1.22 0.157/-
ResETDNN 3.06 0.202/0.205 0.301/0.332
ThinResNet34 2.24 0.152/0.156 0.224/0.236
ResNet34 1.42 0.087/0.089 0.130/0.170

so we can back-propagate gradients from the final score to the
waveform.

Table 1 shows the performance of our systems for bona-
fide trials compared with the best reported in the literature [5,
35, 34]. The table shows that our systems are comparable to the
current state-of-the-art. For DCF, we used the SRE19 AV [2]
operating point Py = 0.05, since the number of errors in lower
operating points were too small to compute reliable metrics.

6.2. White-box attack results

Figure 1 shows results for white-box attacks on ResNet34 x-
vectors in terms of EER and DCF at Pr = 0.05. Mini-
mum DCF is represented by dashed lines and actual DCF by
solid lines. Regarding FGSM attacks, Rand-FGSM (red) out-
performed FGSM (blue) in all metrics, with the same comput-
ing cost. Iterative-FGSM (green) performed the best, but hav-
ing 5x higher cost than simpler FGSM variants. Iter-FGSM
achieved actual DCF> 1 for perturbation budgets as high as 30
and 50 dB in evasion and impersonation attacks, respectively.
Impersonation damaged DCF more than evasion for high SNR
budgets. This is explained because impersonation increments
false alarms and, for our operating point, the false alarm rate has
a higher weight than the miss rate in the DCF formula. Thus,
small increments in the number of false alarms can lead to large
increments in DCF.

Regarding Carlini-Wagner (CW) attacks, first, we compare
different perturbation metrics (L2, SNR and RMS) setting the
confidence x = 0 in (7). As mentioned in Section 4.2, CW at-
tack consists of two nested loops, the outer loop optimizes the
weight c in (6), while the inner loop optimizes the perturbation
6. We set the iterations for outer and inner loops to 9 and 10,
respectively. Thus, CW queried the model 18 more than Iter-
FGSM. The L2, SNR and RMS versions performed similarly,
being CW-RMS slightly better in Act. DCF. CW attacks per-
formed well in terms of Act. DCF but not in terms of EER and
min. DCF, compared to FGSM attacks. This is because CW
is very dependent on the operating point (decision threshold) of
the system. It searches for the minimum perturbation that makes
the score to cross the threshold, but it does not care about other
operating points. As a consequence, the CW had a smaller im-
pact on EER than FGSM (almost no impact in evasion attack).
Similarly, CW min. DCFs were smaller than FGSM variants,
which exhibit min. DCF close to act. DCFs. Note that to calcu-
late min. DCEF, we find a new decision threshold that minimizes
the cost. Using min. DCF as metric is like assuming that we
know that the system is under attack, and we adapt the decision
threshold (change op. point) to the attack. This situation is not
realistic, from our point of view. If we increase the CW inner
loop iterations to 40 (orange), we increase act. DCF-getting
close to the Iter-FGSM result— but EER and min. DCF reduce
even further. Thus, the more optimal the perturbation for a given
threshold, the worse may be for other operating points. To make
CW generalize to other operating points, a solution is increas-
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(MinDCF': dashed; ActDCF: solid; No-attack: black).

ing k in (7). By setting x = 4 (greenlime), we significantly
increased EER and min. DCF.

From the above discussion, we conclude that metrics for
adversarial attacks to ASV need to be calibration (threshold)
sensitive. Metrics like EER or min. DCF may sub-estimate the
impact of the attack on our system. Actual DCF is our pre-
ferred metric since the ASV community widely uses it. How-
ever, other metrics such as miss rate and false alarm rate at a
given threshold could also be used.

ThinResNet34 and Res-ETDNN x-vector were as vulnera-
ble as ResNet34 to white-box attacks. We do not include the
results due to the limited space available.

6.3. Transfer-based black-box attack results

We also considered attacking black-box x-vectors, for which
we do not know its architecture or parameters. However, we
assumed that the attacker could obtain a white-box system and
use it to generate adversarial examples. We attacked black-box
ResNet34 generating examples with white-box ThinResNet34
and ResETDNN x-vectors using Iter-FGSM-we observed that
Iter-FGSM examples had more transferability than CW. Fig-
ure 2 shows the results for adversarial impersonation. Though
the black-box attacks (red, green) performance was not as good
as the white-box (blue), they were highly successful for high
SNR budgets. ThinResNet34 achieved DCF=0.5 with a budget
of 40 dB, and ResETDNN with 30 dB. Note that for these
attacks, we still assumed white-box feature extractor and en-
rollment utterance. We will analyze fully black-box setups in
future work.

7. Conclusions

In this work, we studied the problem of adversarial attacks to the
current state-of-the-art speaker verification (SV) systems. We
proved that x-vector systems are highly vulnerable to white-box
and transfer-based black-box attacks, even using simple attack
methods such as fast gradient sign. We proposed a methodol-
ogy for benchmarking ASV robustness based on plotting ASV
metrics against a perturbation budget. We argue that the ASV
metric should be calibration (threshold) sensitive, e.g., actual
DCF. We justified this claim based on the fact that some at-
tacks, e.g., Carlini-Wagner, may focus on fooling the system at
a given operating point, not affecting others. Thus, EER and
min. DCF are over-optimistic metrics. The perturbation budget
metric should be related to human perception. We used SNR,
but in future work we will explore metrics more related to psy-
choacoustics.
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